Extraordinary Waveguide-Enhanced Optical Microfiber Sensor for Operando Electrocatalysis Studies

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-03-15 DOI:10.1021/acs.nanolett.5c00280
Tiansheng Huang, Jiongshen Pan, Qijian Yuan, Li-Peng Sun, Bai-Ou Guan
{"title":"Extraordinary Waveguide-Enhanced Optical Microfiber Sensor for Operando Electrocatalysis Studies","authors":"Tiansheng Huang, Jiongshen Pan, Qijian Yuan, Li-Peng Sun, Bai-Ou Guan","doi":"10.1021/acs.nanolett.5c00280","DOIUrl":null,"url":null,"abstract":"Optical detection and sensing have been widely applied to electrochemical systems, and their cutting-edge technology is creating current trends in operando characterization. The mass transfer at the electrode–electrolyte interface induces not only the electron exchange but also the changes in optical properties such as dielectric constants, resulting in detectable absorption or resonance signals. However, light–matter interactions are limited due to the inherently short optical path length of the interface. Here, we report the ultrasensitive detection of electrocatalytic processes enhanced by waveguide-engineered modal interference. We show that, by modulating the microfiber diameter so that the group phase velocity of beating modes approaches equalization, the substantially enhanced refractive index sensitivity enables accurate capture of chemical dynamics near the electrode surface, presenting a clear “eye diagram” related to the methanol oxidation reaction during operando studies.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"57 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00280","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical detection and sensing have been widely applied to electrochemical systems, and their cutting-edge technology is creating current trends in operando characterization. The mass transfer at the electrode–electrolyte interface induces not only the electron exchange but also the changes in optical properties such as dielectric constants, resulting in detectable absorption or resonance signals. However, light–matter interactions are limited due to the inherently short optical path length of the interface. Here, we report the ultrasensitive detection of electrocatalytic processes enhanced by waveguide-engineered modal interference. We show that, by modulating the microfiber diameter so that the group phase velocity of beating modes approaches equalization, the substantially enhanced refractive index sensitivity enables accurate capture of chemical dynamics near the electrode surface, presenting a clear “eye diagram” related to the methanol oxidation reaction during operando studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Investigating the Rapid Failure of Focused Ion Beam Deposited Electrical Contacts: An In-Situ and Ultrafast Transmission Electron Microscopy Approach Ultrafast Charged MnO2 Nanosheets/Carbon Fiber with Mechanical and Postcharging Antibacterial Activity Liquid Metal Composite Organohydrogel Based on Water-Soluble Starch Stabilizer with Supertoughness, Self-Healing, and Harsh-Environmental Tolerance for an Advanced Strain Sensor Extraordinary Waveguide-Enhanced Optical Microfiber Sensor for Operando Electrocatalysis Studies On the Interplay of Electronic and Lattice Screening on Exciton Binding in Two-Dimensional Lead Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1