Performance analysis of soil-geopolymer deep mix column in soft soil under static and cyclic loading

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-03-14 DOI:10.1016/j.soildyn.2025.109368
Sanjoli Gupta , Suresh Kumar , N. Muni Pradeep , Mayank Nishant
{"title":"Performance analysis of soil-geopolymer deep mix column in soft soil under static and cyclic loading","authors":"Sanjoli Gupta ,&nbsp;Suresh Kumar ,&nbsp;N. Muni Pradeep ,&nbsp;Mayank Nishant","doi":"10.1016/j.soildyn.2025.109368","DOIUrl":null,"url":null,"abstract":"<div><div>Deep soil mixing (DSM) is a widely used ground improvement method to enhance the properties of soft soils by blending them with cementitious materials to reduce settlement and form a load-bearing column within the soil. However, using cement as a binding material significantly contributes to global warming and climatic change. Moreover, there is a need to understand the dynamic behavior of the DSM-stabilized soil under traffic loading conditions. In order to address both of the difficulties, a set of 1-g physical model tests have been conducted to examine the behavior of a single geopolymer-stabilized soil column (GPSC) as a DSM column in soft soil ground treatment under static and cyclic loading. Static loading model tests were performed on the end-bearing (<em>l/h</em> = 1) GPSC stabilized ground with <em>A</em><sub><em>r</em></sub> of 9 %, 16 %, 25 %, and 36 % and floating GPSC stabilized ground with <em>l/h</em> ratio of 0.35, 0.5, and 0.75 to understand the load settlement behavior of the model ground. Under cyclic loading, the effect of <em>A</em><sub><em>r</em></sub> in end-bearing conditions and cyclic loading amplitude with different CSR was performed. Earth pressure cells were used to measure the stress distribution in the GPSC and the surrounding soil in terms of stress concentration ratio, and pore pressure transducers were used to monitor the excess pore water pressure dissipated in the surrounding soil of the GPSC during static and cyclic loading. The experimental results show that the bearing improvement ratio was 2.28, 3.74, 7.67, and 9.24 for <em>A</em><sub><em>r</em></sub> of 9 %, 16 %, 25 %, and 36 %, respectively, and was 1.49, 1.82, and 2.82 for <em>l/h</em> ratios of 0.35, 0.5, and 0.75 respectively. Also, the settlement induced due to cyclic loading was high under the same static and cyclic stress for all the area replacement ratios. Furthermore, the impact of cyclic loading is reduced with an increase in the area replacement ratio. Excess pore water pressure generated from static and cyclic loads was effectively decreased by installing GPSC.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109368"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Deep soil mixing (DSM) is a widely used ground improvement method to enhance the properties of soft soils by blending them with cementitious materials to reduce settlement and form a load-bearing column within the soil. However, using cement as a binding material significantly contributes to global warming and climatic change. Moreover, there is a need to understand the dynamic behavior of the DSM-stabilized soil under traffic loading conditions. In order to address both of the difficulties, a set of 1-g physical model tests have been conducted to examine the behavior of a single geopolymer-stabilized soil column (GPSC) as a DSM column in soft soil ground treatment under static and cyclic loading. Static loading model tests were performed on the end-bearing (l/h = 1) GPSC stabilized ground with Ar of 9 %, 16 %, 25 %, and 36 % and floating GPSC stabilized ground with l/h ratio of 0.35, 0.5, and 0.75 to understand the load settlement behavior of the model ground. Under cyclic loading, the effect of Ar in end-bearing conditions and cyclic loading amplitude with different CSR was performed. Earth pressure cells were used to measure the stress distribution in the GPSC and the surrounding soil in terms of stress concentration ratio, and pore pressure transducers were used to monitor the excess pore water pressure dissipated in the surrounding soil of the GPSC during static and cyclic loading. The experimental results show that the bearing improvement ratio was 2.28, 3.74, 7.67, and 9.24 for Ar of 9 %, 16 %, 25 %, and 36 %, respectively, and was 1.49, 1.82, and 2.82 for l/h ratios of 0.35, 0.5, and 0.75 respectively. Also, the settlement induced due to cyclic loading was high under the same static and cyclic stress for all the area replacement ratios. Furthermore, the impact of cyclic loading is reduced with an increase in the area replacement ratio. Excess pore water pressure generated from static and cyclic loads was effectively decreased by installing GPSC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Performance of Reyhanlı Dam during February 6, 2023 Kahramanmaraş-Türkiye earthquake sequence Shaking table experiments to investigate the seismic response of drag embedded anchors Performance analysis of soil-geopolymer deep mix column in soft soil under static and cyclic loading Runout of liquefaction-induced tailings dam failure: Influence of earthquake motions and residual strength Seismic performance and soil-structure interaction of shallow reinforced concrete tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1