Runout of liquefaction-induced tailings dam failure: Influence of earthquake motions and residual strength

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-03-14 DOI:10.1016/j.soildyn.2025.109371
Brent Sordo, Ellen Rathje, Krishna Kumar
{"title":"Runout of liquefaction-induced tailings dam failure: Influence of earthquake motions and residual strength","authors":"Brent Sordo,&nbsp;Ellen Rathje,&nbsp;Krishna Kumar","doi":"10.1016/j.soildyn.2025.109371","DOIUrl":null,"url":null,"abstract":"<div><div>This study utilizes a hybrid Finite Element Method (FEM) and Material Point Method (MPM) to investigate the runout of liquefaction-induced flow slide failures. The key inputs to this analysis are the earthquake ground motion, which induces liquefaction, and the post-liquefaction residual strength. The influence of these factors on runout is evaluated by subjecting a model of a tailings dam to thirty different earthquake motions and by assigning different values of post-liquefaction residual strength. Ground motions with larger peak ground accelerations (PGA) generate liquefaction to larger depths, thus mobilizing a greater mass of material and resulting in a flow slide with greater runout. However, different ground motions with the same PGA yield significant variations in the depth of liquefaction, indicating that other ground motion characteristics (e.g., frequency content) also exert significant influence over the initiation of liquefaction. Ground motion characteristics of peak ground velocity (PGV) and Modified Acceleration Spectrum Intensity (MASI) show a strong correlation to the induced depth of liquefaction because they capture both the intensity and frequency content of the earthquake motion. The computed runout is directly related to the depth of liquefaction induced by the earthquake motion. For dam geometry analyzed, measurable runout occurs when liquefaction extends to 10 m depth and the runout is maximized when liquefaction extends to about 18 m. Strain-softening of the residual strength of the liquefied tailings during runout is shown to substantially increase the runout distance of the flow slide, highlighting the need for additional research to better characterize the appropriate strength of liquefied materials during flow failures.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109371"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001642","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes a hybrid Finite Element Method (FEM) and Material Point Method (MPM) to investigate the runout of liquefaction-induced flow slide failures. The key inputs to this analysis are the earthquake ground motion, which induces liquefaction, and the post-liquefaction residual strength. The influence of these factors on runout is evaluated by subjecting a model of a tailings dam to thirty different earthquake motions and by assigning different values of post-liquefaction residual strength. Ground motions with larger peak ground accelerations (PGA) generate liquefaction to larger depths, thus mobilizing a greater mass of material and resulting in a flow slide with greater runout. However, different ground motions with the same PGA yield significant variations in the depth of liquefaction, indicating that other ground motion characteristics (e.g., frequency content) also exert significant influence over the initiation of liquefaction. Ground motion characteristics of peak ground velocity (PGV) and Modified Acceleration Spectrum Intensity (MASI) show a strong correlation to the induced depth of liquefaction because they capture both the intensity and frequency content of the earthquake motion. The computed runout is directly related to the depth of liquefaction induced by the earthquake motion. For dam geometry analyzed, measurable runout occurs when liquefaction extends to 10 m depth and the runout is maximized when liquefaction extends to about 18 m. Strain-softening of the residual strength of the liquefied tailings during runout is shown to substantially increase the runout distance of the flow slide, highlighting the need for additional research to better characterize the appropriate strength of liquefied materials during flow failures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Performance of Reyhanlı Dam during February 6, 2023 Kahramanmaraş-Türkiye earthquake sequence Shaking table experiments to investigate the seismic response of drag embedded anchors Performance analysis of soil-geopolymer deep mix column in soft soil under static and cyclic loading Runout of liquefaction-induced tailings dam failure: Influence of earthquake motions and residual strength Seismic performance and soil-structure interaction of shallow reinforced concrete tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1