Somayeh Mirzaee , Mehdi Pajouhesh , Fumitoshi Imaizumi , Khodayar Abdollahi , Christopher Gomez
{"title":"Gully erosion development and the role of vegetation cover in arid area during an extreme flood (Case study: Dashtiari gully, Iran)","authors":"Somayeh Mirzaee , Mehdi Pajouhesh , Fumitoshi Imaizumi , Khodayar Abdollahi , Christopher Gomez","doi":"10.1016/j.ecoleng.2025.107600","DOIUrl":null,"url":null,"abstract":"<div><div>This study constructs a hot-spot analysis to explore the relationship between extreme floods and the dynamics of gully erosion in the Dashtiari region of southeastern Iran, specifically within a 6 km<sup>2</sup> area along the coastal ecosystem of the Oman Sea. Utilizing UAV-photogrammetry, we assessed the impact of a significant flood event in January 2020, characterized by 113 mm of rainfall and a 200-year return period. Our analysis revealed a total of 5198 samples collected across various channel sections, with average elevation changes of 3.4 m downstream, 2.7 m in the middle stream, and 2.8 m upstream of study area. The most substantial morphological changes were found in the downstream area, with bankside and bed measurement changes of 2.9 m and 3.8 m, respectively. Furthermore, the analysis indicated that the downstream section exhibited a 31 % greater elevation change compared to the middle stream. The role of vegetation cover was also evaluated, showing that sedimentation rates were significantly higher within 1 m downstream of trees compared to distances of 3 m and 7 m at upstream of trees. The results revealing that as the distance from the tree increases, sedimentation decreases in both upstream and downstream directions. Despite the overarching influence of erosion, sedimentation emerged as a dominant process downstream. Statistical analyses confirmed significant differences in channel dynamics at a 99 % confidence level, highlighting the complex interplay of hydrological and geomorphological factors in gully erosion dynamics. These results underscore the importance of vegetation cover in mitigating erosion and highlight the need for in-depth analysis to address adverse impacts on the environment and local communities.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"215 ","pages":"Article 107600"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425000886","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study constructs a hot-spot analysis to explore the relationship between extreme floods and the dynamics of gully erosion in the Dashtiari region of southeastern Iran, specifically within a 6 km2 area along the coastal ecosystem of the Oman Sea. Utilizing UAV-photogrammetry, we assessed the impact of a significant flood event in January 2020, characterized by 113 mm of rainfall and a 200-year return period. Our analysis revealed a total of 5198 samples collected across various channel sections, with average elevation changes of 3.4 m downstream, 2.7 m in the middle stream, and 2.8 m upstream of study area. The most substantial morphological changes were found in the downstream area, with bankside and bed measurement changes of 2.9 m and 3.8 m, respectively. Furthermore, the analysis indicated that the downstream section exhibited a 31 % greater elevation change compared to the middle stream. The role of vegetation cover was also evaluated, showing that sedimentation rates were significantly higher within 1 m downstream of trees compared to distances of 3 m and 7 m at upstream of trees. The results revealing that as the distance from the tree increases, sedimentation decreases in both upstream and downstream directions. Despite the overarching influence of erosion, sedimentation emerged as a dominant process downstream. Statistical analyses confirmed significant differences in channel dynamics at a 99 % confidence level, highlighting the complex interplay of hydrological and geomorphological factors in gully erosion dynamics. These results underscore the importance of vegetation cover in mitigating erosion and highlight the need for in-depth analysis to address adverse impacts on the environment and local communities.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.