Longqian Zhao , Shixin Li , Yi Yang , Linlin Qi , Qinyuan Zhu , Yue Zhao , Hui Qi , Xiaoping Liao , Yue Zhang , Meng Wang
{"title":"Biosensor-based dual-color droplet microfluidic platform for precise high-throughput screening of erythromycin hyperproducers","authors":"Longqian Zhao , Shixin Li , Yi Yang , Linlin Qi , Qinyuan Zhu , Yue Zhao , Hui Qi , Xiaoping Liao , Yue Zhang , Meng Wang","doi":"10.1016/j.bios.2025.117376","DOIUrl":null,"url":null,"abstract":"<div><div>Biosensor-based droplet microfluidic high-throughput screening is extensively utilized in engineering microbial cell factories for the efficient production of various natural products. Under ideal conditions, biosensors detect product concentrations in the environment and emit corresponding measurable signals. However, bacteria cell growth rates and gene expression are significantly regulated in response to fluctuating environments, leading to substantial heterogeneity in cell density and gene expression among different subpopulations. In droplet environments, where cell density measurement is impractical, this heterogeneity can cause inaccuracies and an increase in false positives during biosensor-based screening, resulting in a significant additional workload for rescreening and verification processes. In this study, we developed modified dual-color, whole-cell <em>Escherichia coli</em> biosensors that report normalized fluorescent outputs, taking into account cell heterogeneity against various environmental stimuli. These biosensors were integrated with a droplet-based microfluidic platform to facilitate dual-color screening of libraries, achieving a superior enrichment ratio and increased droplet uniformity compared to single-color screening in the proof-of-concept attempt. In practical applications, the dual-color biosensor-assisted screening demonstrated 24.2 % and 11.9 % higher positive rates for wild-type <em>Saccharopolyspora erythraea</em> NRRL 23338 and industrial S0-derived mutagenesis libraries, respectively, compared to the single-color method. Additionally, S0-derived erythromycin hyperproducers with up to 19.6 % production improvement were successfully identified. This dual-color biosensor-assisted method enhances screening accuracy and reduces false positives by mitigating the impact of whole-cell biosensor heterogeneity, providing a universal strategy for engineering genetically encoded whole-cell biosensors. This advancement significantly improves high-throughput screening performance for various natural products in biosensor-driven applications.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"278 ","pages":"Article 117376"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325002507","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Biosensor-based droplet microfluidic high-throughput screening is extensively utilized in engineering microbial cell factories for the efficient production of various natural products. Under ideal conditions, biosensors detect product concentrations in the environment and emit corresponding measurable signals. However, bacteria cell growth rates and gene expression are significantly regulated in response to fluctuating environments, leading to substantial heterogeneity in cell density and gene expression among different subpopulations. In droplet environments, where cell density measurement is impractical, this heterogeneity can cause inaccuracies and an increase in false positives during biosensor-based screening, resulting in a significant additional workload for rescreening and verification processes. In this study, we developed modified dual-color, whole-cell Escherichia coli biosensors that report normalized fluorescent outputs, taking into account cell heterogeneity against various environmental stimuli. These biosensors were integrated with a droplet-based microfluidic platform to facilitate dual-color screening of libraries, achieving a superior enrichment ratio and increased droplet uniformity compared to single-color screening in the proof-of-concept attempt. In practical applications, the dual-color biosensor-assisted screening demonstrated 24.2 % and 11.9 % higher positive rates for wild-type Saccharopolyspora erythraea NRRL 23338 and industrial S0-derived mutagenesis libraries, respectively, compared to the single-color method. Additionally, S0-derived erythromycin hyperproducers with up to 19.6 % production improvement were successfully identified. This dual-color biosensor-assisted method enhances screening accuracy and reduces false positives by mitigating the impact of whole-cell biosensor heterogeneity, providing a universal strategy for engineering genetically encoded whole-cell biosensors. This advancement significantly improves high-throughput screening performance for various natural products in biosensor-driven applications.
IF 5.3 2区 医学Lung CancerPub Date : 2020-01-01DOI: 10.1016/j.lungcan.2019.11.018
Shuo Yang , Shiqi Mao , Xuefei Li , Chao Zhao , Qian Liu , Xiaofei Yu , Yan Wang , Yiwei Liu , Yingying Pan , Chunyan Wang , Guanghui Gao , Wei Li , Anwen Xiong , Bin Chen , Hui Sun , Yayi He , Fengying Wu , Xiaoxia Chen , Chunxia Su , Shengxiang Ren , Caicun Zhou
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.