Efficient production of a novel recombinant fusion protein of EIEC effector IpaD and EGFP: Biophysical characterization and functional studies

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2025-03-12 DOI:10.1016/j.bbapap.2025.141066
Sudeshna Halder, Namita Jaiswal, Salari Charan Balajee, Nibedita Mahata
{"title":"Efficient production of a novel recombinant fusion protein of EIEC effector IpaD and EGFP: Biophysical characterization and functional studies","authors":"Sudeshna Halder,&nbsp;Namita Jaiswal,&nbsp;Salari Charan Balajee,&nbsp;Nibedita Mahata","doi":"10.1016/j.bbapap.2025.141066","DOIUrl":null,"url":null,"abstract":"<div><div>The conserved invasion plasmid antigen D (IpaD) protein demonstrates broad protective capabilities against bacillary dysentery caused by Enteroinvasive <em>Escherichia coli</em> (EIEC) and <em>Shigella</em>. However, the instability of the IpaD protein at room temperature limits its therapeutic potential. The stabilization and efficient production of functional recombinant proteins remain critical challenges in therapeutic and vaccine development. This study presents a novel fluorescence fusion strategy for producing a stable IpaD-EGFP recombinant protein using a flexible linker (GGGGS)₃. The fusion technique enhances the expression level (∼53 %), solubility (∼77 %), and stability of the IpaD-EGFP fusion protein. Biophysical characterization studies suggest that the IpaD-EGFP fusion protein is stable at refrigerated temperatures for extended periods and up to 1 month at 25 °C. The IpaD-EGFP protein triggers apoptosis in Raw 267.4 cells through activation of caspases 3/7. The protein also induces antibody response in BALB/c mice indicating its immunogenicity. Together, these findings indicate that IpaD-EGFP generated in this study is a potential approach for the design and production of stable IpaD-based protein therapeutics, breaking the expensive “cold chain” of continuous refrigeration. Fusion approach significantly enhanced the solubility, yield, and stability of IpaD, while enabling efficient purification.</div></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1873 4","pages":"Article 141066"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963925000044","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The conserved invasion plasmid antigen D (IpaD) protein demonstrates broad protective capabilities against bacillary dysentery caused by Enteroinvasive Escherichia coli (EIEC) and Shigella. However, the instability of the IpaD protein at room temperature limits its therapeutic potential. The stabilization and efficient production of functional recombinant proteins remain critical challenges in therapeutic and vaccine development. This study presents a novel fluorescence fusion strategy for producing a stable IpaD-EGFP recombinant protein using a flexible linker (GGGGS)₃. The fusion technique enhances the expression level (∼53 %), solubility (∼77 %), and stability of the IpaD-EGFP fusion protein. Biophysical characterization studies suggest that the IpaD-EGFP fusion protein is stable at refrigerated temperatures for extended periods and up to 1 month at 25 °C. The IpaD-EGFP protein triggers apoptosis in Raw 267.4 cells through activation of caspases 3/7. The protein also induces antibody response in BALB/c mice indicating its immunogenicity. Together, these findings indicate that IpaD-EGFP generated in this study is a potential approach for the design and production of stable IpaD-based protein therapeutics, breaking the expensive “cold chain” of continuous refrigeration. Fusion approach significantly enhanced the solubility, yield, and stability of IpaD, while enabling efficient purification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
55
审稿时长
33 days
期刊介绍: BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.
期刊最新文献
Efficient production of a novel recombinant fusion protein of EIEC effector IpaD and EGFP: Biophysical characterization and functional studies Tracking heme biology with resonance Raman spectroscopy DSP-1, the major fibronectin type-II protein of donkey seminal plasma is a small heat-shock protein and exhibits chaperone-like activity against thermal and oxidative stress Participation of a cysteine tetrad in the recycling mechanism of methionine sulfoxide reductase A from radiation-tolerant Deinococcus bacteria Elucidation of cytotoxicity of α-Synuclein fibrils on immune cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1