AI explainability in oculomics: how it works, its role in establishing trust, and what still needs to be addressed.

IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Progress in Retinal and Eye Research Pub Date : 2025-03-12 DOI:10.1016/j.preteyeres.2025.101352
Songyang An, Kelvin Teo, Michael V McConnell, John Marshall, Christopher Galloway, David Squirrell
{"title":"AI explainability in oculomics: how it works, its role in establishing trust, and what still needs to be addressed.","authors":"Songyang An, Kelvin Teo, Michael V McConnell, John Marshall, Christopher Galloway, David Squirrell","doi":"10.1016/j.preteyeres.2025.101352","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in artificial intelligence (AI) have seen a proliferation of algorithms that are now capable of predicting a range of systemic diseases from retinal images. Unlike traditional retinal disease detection AI models which are trained on well-recognised retinal biomarkers, systemic disease detection or \"oculomics\" models use a range of often poorly characterised retinal biomarkers to arrive at their predictions. As the retinal phenotype that oculomics models use may not be intuitive, clinicians have to rely on the developers' explanations of how these algorithms work in order to understand them. The discipline of understanding how AI algorithms work employs two similar but distinct terms: Explainable AI and Interpretable AI (iAI). Explainable AI describes the holistic functioning of an AI system, including its impact and potential biases. Interpretable AI concentrates solely on examining and understanding the workings of the AI algorithm itself. iAI tools are, therefore, what the clinician must rely on if they are to understand how the algorithm works and whether its predictions are reliable. The iAI tools that developers use can be delineated into two broad categories: Intrinsic methods that improve transparency through architectural changes, and post-hoc methods that explain trained models via external algorithms. Currently, post-hoc methods, class activation maps in particular, are far more widely used than other techniques but they have their limitations especially when applied to oculomics AI models. Aimed at clinicians, we examine how the key iAI methods work, what they are designed to do, and what their limitations are when applied to oculomics AI. We conclude by discussing how combining existing iAI techniques with novel approaches could allow AI developers to better explain how their oculomics models work and reassure clinicians that the results issued are reliable.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":" ","pages":"101352"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.preteyeres.2025.101352","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in artificial intelligence (AI) have seen a proliferation of algorithms that are now capable of predicting a range of systemic diseases from retinal images. Unlike traditional retinal disease detection AI models which are trained on well-recognised retinal biomarkers, systemic disease detection or "oculomics" models use a range of often poorly characterised retinal biomarkers to arrive at their predictions. As the retinal phenotype that oculomics models use may not be intuitive, clinicians have to rely on the developers' explanations of how these algorithms work in order to understand them. The discipline of understanding how AI algorithms work employs two similar but distinct terms: Explainable AI and Interpretable AI (iAI). Explainable AI describes the holistic functioning of an AI system, including its impact and potential biases. Interpretable AI concentrates solely on examining and understanding the workings of the AI algorithm itself. iAI tools are, therefore, what the clinician must rely on if they are to understand how the algorithm works and whether its predictions are reliable. The iAI tools that developers use can be delineated into two broad categories: Intrinsic methods that improve transparency through architectural changes, and post-hoc methods that explain trained models via external algorithms. Currently, post-hoc methods, class activation maps in particular, are far more widely used than other techniques but they have their limitations especially when applied to oculomics AI models. Aimed at clinicians, we examine how the key iAI methods work, what they are designed to do, and what their limitations are when applied to oculomics AI. We conclude by discussing how combining existing iAI techniques with novel approaches could allow AI developers to better explain how their oculomics models work and reassure clinicians that the results issued are reliable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
34.10
自引率
5.10%
发文量
78
期刊介绍: Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists. The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.
期刊最新文献
AI Image Generation Technology in Ophthalmology: Use, Misuse and Future Applications. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. AI explainability in oculomics: how it works, its role in establishing trust, and what still needs to be addressed. En face OCT: Breakthroughs in understanding the pathoanatomy of retinal disease and clinical applications Oculomics: Current concepts and evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1