Benjamin Phipps, Xavier Hadoux, Bin Sheng, J Peter Campbell, T Y Alvin Liu, Pearse A Keane, Carol Y Cheung, Tham Yih Chung, Tien Y Wong, Peter van Wijngaarden
{"title":"AI Image Generation Technology in Ophthalmology: Use, Misuse and Future Applications.","authors":"Benjamin Phipps, Xavier Hadoux, Bin Sheng, J Peter Campbell, T Y Alvin Liu, Pearse A Keane, Carol Y Cheung, Tham Yih Chung, Tien Y Wong, Peter van Wijngaarden","doi":"10.1016/j.preteyeres.2025.101353","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>AI-powered image generation technology holds the potential to dramatically reshape clinical ophthalmic practice. The adoption of this technology relies on clinician acceptance, yet it is an unfamiliar technology for both ophthalmic researchers and clinicians. In this work we present a literature review on the application of image generation technology in ophthalmology to discuss its theoretical applications and future role.</p><p><strong>Methods: </strong>First, we explore the key model designs used for image synthesis, including generative adversarial networks, autoencoders, and diffusion models. We then perform a survey of the literature for image generation technology in ophthalmology prior to September 2024, collecting the type of model used, as well as its clinical application, for each study. Finally, we discuss the limitations of this technology, the risks of its misuse and the future directions of research in this field.</p><p><strong>Results: </strong>Applications of this technology include improving diagnostic model performance, inter-modality image transformation, treatment and disease prognosis, image denoising, and education. Key challenges for integration of this technology into ophthalmic clinical practice include bias in generative models, risk to patient data security, computational and logistical barriers to model development, challenges with model explainability, inconsistent use of validation metrics between studies and misuse of synthetic images. Looking forward, researchers are placing a further emphasis on clinically grounded metrics, the development of image generation foundation models and the implementation of methods to ensure data provenance.</p><p><strong>Conclusion: </strong>It is evident image generation technology has the potential to benefit the field of ophthalmology for many tasks, however, compared to other medical applications of AI, it is still in its infancy. This review aims to enable ophthalmic researchers to identify the optimal model and methodology to best take advantage of this technology.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":" ","pages":"101353"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.preteyeres.2025.101353","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: AI-powered image generation technology holds the potential to dramatically reshape clinical ophthalmic practice. The adoption of this technology relies on clinician acceptance, yet it is an unfamiliar technology for both ophthalmic researchers and clinicians. In this work we present a literature review on the application of image generation technology in ophthalmology to discuss its theoretical applications and future role.
Methods: First, we explore the key model designs used for image synthesis, including generative adversarial networks, autoencoders, and diffusion models. We then perform a survey of the literature for image generation technology in ophthalmology prior to September 2024, collecting the type of model used, as well as its clinical application, for each study. Finally, we discuss the limitations of this technology, the risks of its misuse and the future directions of research in this field.
Results: Applications of this technology include improving diagnostic model performance, inter-modality image transformation, treatment and disease prognosis, image denoising, and education. Key challenges for integration of this technology into ophthalmic clinical practice include bias in generative models, risk to patient data security, computational and logistical barriers to model development, challenges with model explainability, inconsistent use of validation metrics between studies and misuse of synthetic images. Looking forward, researchers are placing a further emphasis on clinically grounded metrics, the development of image generation foundation models and the implementation of methods to ensure data provenance.
Conclusion: It is evident image generation technology has the potential to benefit the field of ophthalmology for many tasks, however, compared to other medical applications of AI, it is still in its infancy. This review aims to enable ophthalmic researchers to identify the optimal model and methodology to best take advantage of this technology.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.