{"title":"Somatic cell reprogramming for Parkinson's disease treatment","authors":"Xiaozhuo Li, Kevin Fang, Fengping Wang","doi":"10.1002/ibra.12189","DOIUrl":null,"url":null,"abstract":"<p>Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration of dopamine neurons in the substantia nigra pars compacta. The patient exhibits a series of motor symptoms, such as static tremors, which impair their capacity to take care for themselves in daily life. In the late stage, the patient is unable to walk independently and is bedridden for an extended period of time, reducing their quality of life significantly. So far, treatment methods for PD mainly include drug therapy and deep brain stimulation. Pharmacotherapy is aimed at increasing dopamine (DA) levels; however, the treatment effect is more pronounced in the short term, and there is no benefit in improvement in the overall progression of the disease. In recent years, novel therapeutic strategies have been developed, such as cell reprogramming, trying to generate more DA in PD treatment. This review mainly discusses the advantages, methodology, cell origin, transformation efficiency, and practical application shortcomings of cell reprogramming therapy in PD strategy.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":"11 1","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibrain","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ibra.12189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration of dopamine neurons in the substantia nigra pars compacta. The patient exhibits a series of motor symptoms, such as static tremors, which impair their capacity to take care for themselves in daily life. In the late stage, the patient is unable to walk independently and is bedridden for an extended period of time, reducing their quality of life significantly. So far, treatment methods for PD mainly include drug therapy and deep brain stimulation. Pharmacotherapy is aimed at increasing dopamine (DA) levels; however, the treatment effect is more pronounced in the short term, and there is no benefit in improvement in the overall progression of the disease. In recent years, novel therapeutic strategies have been developed, such as cell reprogramming, trying to generate more DA in PD treatment. This review mainly discusses the advantages, methodology, cell origin, transformation efficiency, and practical application shortcomings of cell reprogramming therapy in PD strategy.