Cordycepin mediates neuroprotection against apoptosis via ERK/CREB signaling activation in Aβ1–42-induced neuronal cell models

Ibrain Pub Date : 2025-02-08 DOI:10.1002/ibra.12192
Wenshu Zhou, Cheng Wang, Yige Tan, Philip Lazarovici, Xiaoyan Wen, Shaoping Li, Wenhua Zheng
{"title":"Cordycepin mediates neuroprotection against apoptosis via ERK/CREB signaling activation in Aβ1–42-induced neuronal cell models","authors":"Wenshu Zhou,&nbsp;Cheng Wang,&nbsp;Yige Tan,&nbsp;Philip Lazarovici,&nbsp;Xiaoyan Wen,&nbsp;Shaoping Li,&nbsp;Wenhua Zheng","doi":"10.1002/ibra.12192","DOIUrl":null,"url":null,"abstract":"<p>The aggregation of β-amyloid (Aβ) peptides has been associated with the onset of Alzheimer's disease (AD) by causing neurotoxicity due to oxidative stress and apoptosis. Cordycepin is a natural derivative of the nucleoside adenosine that displays potent antioxidant, antitumor, anti-inflammatory, and neuroprotective properties. However, the mechanism of the neuroprotective effect of cordycepin toward Aβ-induced neurotoxicity, as well as underlying mechanisms, is still unclear. In this study, we found that cordycepin conferred neuroprotection to catecholaminergic PC12 neuronal cell cultures exposed to Aβ<sub>1–42</sub>-insult by reducing the production of reactive oxygen species, restoring the mitochondrial membrane potential, and inhibiting apoptosis. Cordycepin stimulated the phosphorylation of extracellular signal-regulated kinase (ERK) and cyclic AMP-responsive element-binding protein (CREB) in a time- and concentration-dependent manner. Inhibition of the ERK pathway reduced the neuroprotective effect of cordycepin. Similar results were obtained with hippocampal HT22 neuronal cell cultures. Cumulatively, these findings suggest that cordycepin-induced neuroprotection toward Aβ<sub>1–42</sub> neurotoxic insult may involve activation of the ERK/CREB pathway. This study expands our knowledge of the neuroprotective function of cordycepin and suggests that it holds promise as a natural lead compound for drug development in AD.</p>","PeriodicalId":94030,"journal":{"name":"Ibrain","volume":"11 1","pages":"84-97"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ibra.12192","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibrain","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ibra.12192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aggregation of β-amyloid (Aβ) peptides has been associated with the onset of Alzheimer's disease (AD) by causing neurotoxicity due to oxidative stress and apoptosis. Cordycepin is a natural derivative of the nucleoside adenosine that displays potent antioxidant, antitumor, anti-inflammatory, and neuroprotective properties. However, the mechanism of the neuroprotective effect of cordycepin toward Aβ-induced neurotoxicity, as well as underlying mechanisms, is still unclear. In this study, we found that cordycepin conferred neuroprotection to catecholaminergic PC12 neuronal cell cultures exposed to Aβ1–42-insult by reducing the production of reactive oxygen species, restoring the mitochondrial membrane potential, and inhibiting apoptosis. Cordycepin stimulated the phosphorylation of extracellular signal-regulated kinase (ERK) and cyclic AMP-responsive element-binding protein (CREB) in a time- and concentration-dependent manner. Inhibition of the ERK pathway reduced the neuroprotective effect of cordycepin. Similar results were obtained with hippocampal HT22 neuronal cell cultures. Cumulatively, these findings suggest that cordycepin-induced neuroprotection toward Aβ1–42 neurotoxic insult may involve activation of the ERK/CREB pathway. This study expands our knowledge of the neuroprotective function of cordycepin and suggests that it holds promise as a natural lead compound for drug development in AD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cordycepin mediates neuroprotection against apoptosis via ERK/CREB signaling activation in Aβ1–42-induced neuronal cell models The causal relationship between systemic lupus erythematosus and juvenile myoclonic epilepsy: A Mendelian randomization study and mediation analysis Somatic cell reprogramming for Parkinson's disease treatment Neuroanatomical and functional correlates in borderline personality disorder: A narrative review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1