Development of a Physiologically-Based Pharmacokinetic Model for Quantitative Interpretation of Transdermal Drug Delivery of Rotigotine, a Dopamine Agonist for Treating Parkinson's Disease.

IF 1.9 4区 医学 Q3 PHARMACOLOGY & PHARMACY European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2025-03-15 DOI:10.1007/s13318-025-00938-3
Ji-Hun Jang, Seung-Hyun Jeong
{"title":"Development of a Physiologically-Based Pharmacokinetic Model for Quantitative Interpretation of Transdermal Drug Delivery of Rotigotine, a Dopamine Agonist for Treating Parkinson's Disease.","authors":"Ji-Hun Jang, Seung-Hyun Jeong","doi":"10.1007/s13318-025-00938-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Rotigotine, a dopamine agonist, is used to treat Parkinson's disease and restless leg syndrome, with transdermal patches being the primary delivery method in clinical practice. However, quantitative information on the in vivo pharmacokinetics of rotigotine across various dosage regimens via transdermal administration remains limited, and this has been identified as a significant barrier to achieving precision medicine. This study aims to develop a novel physiologically-based systematic pharmacokinetic model tailored to rotigotine transdermal drug delivery. Based on the model, we quantitatively predicted rotigotine distribution patterns in target tissues to assess its in vivo efficacy and safety and to interpret the pharmacokinetic variability in transdermal patches according to covariate reflection.</p><p><strong>Methods: </strong>The data used to develop the quantitative model included clinical outcomes from single (2-8 mg/24 h) and multiple doses (0.5-8 mg/24 h) of rotigotine transdermal patches administered to healthy adults and patients with idiopathic Parkinson's disease or restless legs syndrome. The model was designed to represent whole-body physiological systems, incorporate liver and kidney clearance mechanisms, and account for the specific physicochemical properties influencing drug permeation and distribution across various tissues.</p><p><strong>Results: </strong>The model developed in this study effectively quantified the pharmacokinetic profiles of transdermal rotigotine within an acceptable variability. After transdermal application, rotigotine delivery to the target tissue, the brain, occurred rapidly, and the tissue concentrations at steady-state were approximately 10-fold higher than those in plasma. Incorporating weight as a covariate showed that in underweight individuals, tissue exposure to rotigotine increased by 1.61-fold, with a mean half-life extension of 1.50-fold compared to that of the normal weight population.</p><p><strong>Conclusion: </strong>The quantitative model proposed in this study serves as a foundational tool for advancing precision medicine, reliably characterizing the in vivo pharmacokinetics of rotigotine transdermal delivery across various doses and regimens.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-025-00938-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Rotigotine, a dopamine agonist, is used to treat Parkinson's disease and restless leg syndrome, with transdermal patches being the primary delivery method in clinical practice. However, quantitative information on the in vivo pharmacokinetics of rotigotine across various dosage regimens via transdermal administration remains limited, and this has been identified as a significant barrier to achieving precision medicine. This study aims to develop a novel physiologically-based systematic pharmacokinetic model tailored to rotigotine transdermal drug delivery. Based on the model, we quantitatively predicted rotigotine distribution patterns in target tissues to assess its in vivo efficacy and safety and to interpret the pharmacokinetic variability in transdermal patches according to covariate reflection.

Methods: The data used to develop the quantitative model included clinical outcomes from single (2-8 mg/24 h) and multiple doses (0.5-8 mg/24 h) of rotigotine transdermal patches administered to healthy adults and patients with idiopathic Parkinson's disease or restless legs syndrome. The model was designed to represent whole-body physiological systems, incorporate liver and kidney clearance mechanisms, and account for the specific physicochemical properties influencing drug permeation and distribution across various tissues.

Results: The model developed in this study effectively quantified the pharmacokinetic profiles of transdermal rotigotine within an acceptable variability. After transdermal application, rotigotine delivery to the target tissue, the brain, occurred rapidly, and the tissue concentrations at steady-state were approximately 10-fold higher than those in plasma. Incorporating weight as a covariate showed that in underweight individuals, tissue exposure to rotigotine increased by 1.61-fold, with a mean half-life extension of 1.50-fold compared to that of the normal weight population.

Conclusion: The quantitative model proposed in this study serves as a foundational tool for advancing precision medicine, reliably characterizing the in vivo pharmacokinetics of rotigotine transdermal delivery across various doses and regimens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
64
审稿时长
>12 weeks
期刊介绍: Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences. Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.
期刊最新文献
Development of a Physiologically-Based Pharmacokinetic Model for Quantitative Interpretation of Transdermal Drug Delivery of Rotigotine, a Dopamine Agonist for Treating Parkinson's Disease. Determination of Intrinsic Clearance and Fraction Unbound in Human Liver Microsomes and In Vitro-In Vivo Extrapolation of Human Hepatic Clearance for Marketed Central Nervous System Drugs. Herb-Drug Interaction of Total Glucosides of Paeony and Tripterygium Glycoside with Celecoxib in Beagle Dogs by UPLC-MS/MS. Leveraging Model-Based Simulations to Optimize Extended Dosing of Leuprolide 6-Month Intramuscular Depot Formulation. Dosage Recommendations for Off-label Use of Mycophenolate Mofetil in Pediatric Patients with Thalassemia Undergoing Hematopoietic Stem Cell Transplantation: An Approach Based on Population Pharmacokinetic Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1