Determination of Intrinsic Clearance and Fraction Unbound in Human Liver Microsomes and In Vitro-In Vivo Extrapolation of Human Hepatic Clearance for Marketed Central Nervous System Drugs.
{"title":"Determination of Intrinsic Clearance and Fraction Unbound in Human Liver Microsomes and In Vitro-In Vivo Extrapolation of Human Hepatic Clearance for Marketed Central Nervous System Drugs.","authors":"Veera Raghava Chowdary Palacharla, Ramakrishna Nirogi, Nitesh Kumar, Krishnadas Nandakumar","doi":"10.1007/s13318-024-00931-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study was to determine the apparent intrinsic clearance (Cl<sub>int, app</sub>) and fraction unbound in human liver microsomes (f<sub>u, mic</sub>) of 86 marketed central nervous system (CNS) drugs and to predict the in vivo hepatic blood clearance (CL<sub>h, b</sub>).</p><p><strong>Methods: </strong>Cl<sub>int, app</sub> in human liver microsomes (HLM) was determined by substrate depletion, and f<sub>u, mic</sub> was determined by equilibrium dialysis. The relationship between lipophilicity (logP) and unbound intrinsic clearance (Cl<sub>int, u</sub>) was explored using the Biopharmaceutical Drug Disposition Classification System (BDDCS) and Extended Clearance Classification System (ECCS). The predicted hepatic blood clearance by direct scaling, conventional method and Poulin method using well-stirred (WS) and parallel-tube (PT) models were compared with observed values.</p><p><strong>Results: </strong>The Cl<sub>int, app</sub> in HLM ranged from < 5.8 to 477 µl/min/mg. The f<sub>u, mic</sub> in HLM ranged from 0.02 to 1.0. The scaled Cl<sub>int</sub> values ranged from < 5 to 4496 ml/min/kg. The metabolic rate increased with an increase in logP (logP ≥ 2.5) of the CNS compounds. The direct scaling and Poulin methods showed comparable results based on the percentage of clearance predictions within a two-fold error. The conventional method resulted in under-predictions of Cl<sub>int, in vivo</sub> or CL<sub>h, b</sub> using the WS or PT models. The Poulin method is favored over the other methods based on the statistical parameters.</p><p><strong>Conclusions: </strong>Experimental Cl<sub>int, app</sub> and f<sub>u, mic</sub> for 86 CNS compounds were successfully determined, and the scaled clearance was used to predict the hepatic blood clearance of 34 drugs. The success of prospective clearance predictions using HLM is expected to be high for most of the lipophilic BDDCS class 1 and class 2 and ECCS class 2 CNS compounds. The Poulin method resulted in more accurate predictions falling within a two-fold error of the observed values using the WS or PT models.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-024-00931-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The objective of this study was to determine the apparent intrinsic clearance (Clint, app) and fraction unbound in human liver microsomes (fu, mic) of 86 marketed central nervous system (CNS) drugs and to predict the in vivo hepatic blood clearance (CLh, b).
Methods: Clint, app in human liver microsomes (HLM) was determined by substrate depletion, and fu, mic was determined by equilibrium dialysis. The relationship between lipophilicity (logP) and unbound intrinsic clearance (Clint, u) was explored using the Biopharmaceutical Drug Disposition Classification System (BDDCS) and Extended Clearance Classification System (ECCS). The predicted hepatic blood clearance by direct scaling, conventional method and Poulin method using well-stirred (WS) and parallel-tube (PT) models were compared with observed values.
Results: The Clint, app in HLM ranged from < 5.8 to 477 µl/min/mg. The fu, mic in HLM ranged from 0.02 to 1.0. The scaled Clint values ranged from < 5 to 4496 ml/min/kg. The metabolic rate increased with an increase in logP (logP ≥ 2.5) of the CNS compounds. The direct scaling and Poulin methods showed comparable results based on the percentage of clearance predictions within a two-fold error. The conventional method resulted in under-predictions of Clint, in vivo or CLh, b using the WS or PT models. The Poulin method is favored over the other methods based on the statistical parameters.
Conclusions: Experimental Clint, app and fu, mic for 86 CNS compounds were successfully determined, and the scaled clearance was used to predict the hepatic blood clearance of 34 drugs. The success of prospective clearance predictions using HLM is expected to be high for most of the lipophilic BDDCS class 1 and class 2 and ECCS class 2 CNS compounds. The Poulin method resulted in more accurate predictions falling within a two-fold error of the observed values using the WS or PT models.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.