CircCENPM serves as a CeRNA to aggravate nasopharyngeal carcinoma metastasis and stemness via enhancing BMI1.

IF 2.7 3区 生物学 Hereditas Pub Date : 2025-03-14 DOI:10.1186/s41065-025-00406-7
Rui Wang, Fei Wang
{"title":"CircCENPM serves as a CeRNA to aggravate nasopharyngeal carcinoma metastasis and stemness via enhancing BMI1.","authors":"Rui Wang, Fei Wang","doi":"10.1186/s41065-025-00406-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer with high mortality and dismal prognosis. Emerging research have disclosed that circRNAs are crucial gene expression regulators engaged in tumor advancement. This work aspired to identify novel oncogenic circRNA driving NPC progression.</p><p><strong>Methods: </strong>Bioinformatics analysis was performed to explore and predict underlying circRNA and downstream targets. Luciferase reporter assay was executed to check the binding relationship between these genes. Cell function tests were conducted using CCK-8, would healing, and flow cytometry. The stemness markers CD133, Nanog and Oct4 was detected via western blot.</p><p><strong>Results: </strong>CircCENPM was notably enhanced in NPC. Silencing of circCENPM suppressed NPC cell growth, migration, and stemness in vitro, simultaneously impeded tumorigenesis of NPC in vivo. Moreover, circCENPM could interact with miR-362-3p, whereas miR-362-3p inhibitor apparently reversed the mitigated growth and stemness induced by circCENPM knockdown in NPC cells. Furthermore, BMI1 was identified to be the downstream target of miR-362-3p, and BMI1 introduction partially offset the anti-tumor function of miR-362-3p in NPC cells.</p><p><strong>Conclusion: </strong>CircCENPM functioned as a carcinogenic driver and facilitated NPC growth and stemness via miR-362-3p/BMI1 regulatory network, which provided a potential biomarker and attractive target for NPC intervention and treatment.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"39"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00406-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer with high mortality and dismal prognosis. Emerging research have disclosed that circRNAs are crucial gene expression regulators engaged in tumor advancement. This work aspired to identify novel oncogenic circRNA driving NPC progression.

Methods: Bioinformatics analysis was performed to explore and predict underlying circRNA and downstream targets. Luciferase reporter assay was executed to check the binding relationship between these genes. Cell function tests were conducted using CCK-8, would healing, and flow cytometry. The stemness markers CD133, Nanog and Oct4 was detected via western blot.

Results: CircCENPM was notably enhanced in NPC. Silencing of circCENPM suppressed NPC cell growth, migration, and stemness in vitro, simultaneously impeded tumorigenesis of NPC in vivo. Moreover, circCENPM could interact with miR-362-3p, whereas miR-362-3p inhibitor apparently reversed the mitigated growth and stemness induced by circCENPM knockdown in NPC cells. Furthermore, BMI1 was identified to be the downstream target of miR-362-3p, and BMI1 introduction partially offset the anti-tumor function of miR-362-3p in NPC cells.

Conclusion: CircCENPM functioned as a carcinogenic driver and facilitated NPC growth and stemness via miR-362-3p/BMI1 regulatory network, which provided a potential biomarker and attractive target for NPC intervention and treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
TP53 mutations are frequently concurrent in patients with BRAF V600E mutated solid tumors and is associated with shorter duration of response to BRAF targeted therapy
IF 8.4 1区 医学European Journal of CancerPub Date : 2022-10-01 DOI: 10.1016/s0959-8049(22)01115-7
M. Eriksen, C. Yde, L. B. Ahlborn, C. Qvortrup, U. Lassen, M. Højgaard, I. Spanggaard, K. Rohrberg
Abstract 3254: Multiomics detect potential mechanisms of resistance to BRAF targeted therapy in patients with BRAFV600E mutated solid tumors
IF 11.2 1区 医学Cancer researchPub Date : 2022-06-15 DOI: 10.1158/1538-7445.am2022-3254
M. Eriksen, A. B. Nielsen, F. Mundt, Josephine Kerzel Duel, Matthias Mann, U. Lassen, C. Yde, C. Qvortrup, M. Højgaard, I. Spanggaard, K. Rohrberg
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
期刊最新文献
Mechanistic insights into CDCA gene family-mediated glioblastoma progression: implications for diagnosis, prognosis, and therapeutic targeting. Construction of a ferroptosis-based prediction model for the prognosis of MYCN-amplified neuroblastoma and screening and verification of target sites. ADME gene-driven prognostic model for bladder cancer: a breakthrough in predicting survival and personalized treatment. Screening and analysis of programmed cell death related genes and targeted drugs in sepsis. Causal association between blood metabolites and head and neck cancer: butyrylcarnitine identified as an associated trait for cancer risk and progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1