{"title":"LXRα agonists ameliorates acute rejection after liver transplantation via ABCA1/MAPK and PI3K/AKT/mTOR signaling axis in macrophages.","authors":"Xiaoyan Qin, Dingheng Hu, Qi Li, Shiyi Zhang, Zheng Qin, Liangxu Wang, Rui Liao, Zhongjun Wu, Yanyao Liu","doi":"10.1186/s10020-025-01153-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Liver X receptor α (LXRα) plays an important role in inflammatory immune response induced by hepatic ischemia-reperfusion injury (IRI) and acute rejection (AR). Macrophage M1-polarization play an important role in the occurrence and development of AR. Although the activation of LXR has anti-inflammatory effects, the role of LXRα in AR after liver transplantation (LT) has not been elucidated.</p><p><strong>Objective: </strong>We aimed to investigate LXRα anti-inflammatory and macrophage polarization regulation effects and mechanisms in acute rejection rat models.</p><p><strong>Methods: </strong>LXRα anti-inflammatory and liver function protective effects was initially measured in primary Kupffer cells and LT rat models. Subsequently, a flow cytometry assay was used to detect the regulation effect of LXRα in macrophage polarization. HE staining, TUNEL and ELISA were used to evaluate the co-treatment effects of TO901317 and tacrolimus on hepatic apoptosis and liver acute rejection after LT.</p><p><strong>Results: </strong>In this study, we found that LPS can inhibit the expression of LXRα and activate MAPK pathway and PI3K/AKT/mTOR. We also found that LXRα agonist (TO901317) could improve liver function and rat survival after LT by activating the level of ABCA1 and inhibiting MAPK. TO901317 could inhibit macrophage M1-polarization by activating PI3K/AKT/mTOR signal pathway to improve the liver lesion of AR rats after liver transplantation. Additionally, co-treatment with TO901317 and tacrolimus more effectively alleviated the damaging effects of AR following LT than either drug alone.</p><p><strong>Conclusion: </strong>Our results suggest that the activation of LXRα can improve liver function and rat survival after LT by regulate ABCA1/MAPK and PI3K/AKT/mTOR signaling axis in macrophages.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"99"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01153-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Liver X receptor α (LXRα) plays an important role in inflammatory immune response induced by hepatic ischemia-reperfusion injury (IRI) and acute rejection (AR). Macrophage M1-polarization play an important role in the occurrence and development of AR. Although the activation of LXR has anti-inflammatory effects, the role of LXRα in AR after liver transplantation (LT) has not been elucidated.
Objective: We aimed to investigate LXRα anti-inflammatory and macrophage polarization regulation effects and mechanisms in acute rejection rat models.
Methods: LXRα anti-inflammatory and liver function protective effects was initially measured in primary Kupffer cells and LT rat models. Subsequently, a flow cytometry assay was used to detect the regulation effect of LXRα in macrophage polarization. HE staining, TUNEL and ELISA were used to evaluate the co-treatment effects of TO901317 and tacrolimus on hepatic apoptosis and liver acute rejection after LT.
Results: In this study, we found that LPS can inhibit the expression of LXRα and activate MAPK pathway and PI3K/AKT/mTOR. We also found that LXRα agonist (TO901317) could improve liver function and rat survival after LT by activating the level of ABCA1 and inhibiting MAPK. TO901317 could inhibit macrophage M1-polarization by activating PI3K/AKT/mTOR signal pathway to improve the liver lesion of AR rats after liver transplantation. Additionally, co-treatment with TO901317 and tacrolimus more effectively alleviated the damaging effects of AR following LT than either drug alone.
Conclusion: Our results suggest that the activation of LXRα can improve liver function and rat survival after LT by regulate ABCA1/MAPK and PI3K/AKT/mTOR signaling axis in macrophages.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.