Interaction and driving factors influencing microplastics and dissolved organic matter in the hyporheic ecosystem of the Jinghe River Basin under different land-use types
{"title":"Interaction and driving factors influencing microplastics and dissolved organic matter in the hyporheic ecosystem of the Jinghe River Basin under different land-use types","authors":"Yuting Zhang, Bingjie Li, Zeyu Chen, Jiayuan Feng, Jinxi Song, Yongqing Long, Myint Myint Nyein, Bawa Precious Tani, Mengyang Yang","doi":"10.1016/j.jhazmat.2025.137967","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) and dissolved organic matter (DOM) interact and participate in natural carbon cycling in hyporheic ecosystems. Existing research has mainly examined the effects of different land-use types on DOM; the interaction between MPs and DOM across land-use types remains unclear. This study investigated the interactions and driving factors influencing MPs and DOM in sediments under different land-use patterns. The results revealed that the Jinghe River Basin was dominated by weakly alkaline siliceous gravel and sand. DOM characteristics showed strong spatial heterogeneity between anthropogenic and natural land uses. The main MPs were fibrous, blue and ≤500<!-- --> <!-- -->µm, and the abundance of MPs ≥2000 µm in anthropogenic land was higher than those in mixed and natural land. Statistical analyses showed that the land use type directly determined the differences in the fractions of DOM, and sand and MPs ≥2000 µm were the main factors influencing DOM concentration. Release and adsorption were the main interaction mechanisms between DOM and MPs, which were driven by surrounding environmental factors, different land-use types, and MP characteristics. These findings provide a reference for further research on the complex interactions between MPs and DOM in aquatic environments and theoretical support for carbon cycle modelling in hyporheic ecosystems.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"17 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137967","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) and dissolved organic matter (DOM) interact and participate in natural carbon cycling in hyporheic ecosystems. Existing research has mainly examined the effects of different land-use types on DOM; the interaction between MPs and DOM across land-use types remains unclear. This study investigated the interactions and driving factors influencing MPs and DOM in sediments under different land-use patterns. The results revealed that the Jinghe River Basin was dominated by weakly alkaline siliceous gravel and sand. DOM characteristics showed strong spatial heterogeneity between anthropogenic and natural land uses. The main MPs were fibrous, blue and ≤500 µm, and the abundance of MPs ≥2000 µm in anthropogenic land was higher than those in mixed and natural land. Statistical analyses showed that the land use type directly determined the differences in the fractions of DOM, and sand and MPs ≥2000 µm were the main factors influencing DOM concentration. Release and adsorption were the main interaction mechanisms between DOM and MPs, which were driven by surrounding environmental factors, different land-use types, and MP characteristics. These findings provide a reference for further research on the complex interactions between MPs and DOM in aquatic environments and theoretical support for carbon cycle modelling in hyporheic ecosystems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.