{"title":"ASSESSMENT OF THE BIODEGRADABILITY OF POLYLACTIC ACID (PLA) IN FRESHWATER USING EN ISO 14851:2019: CHALLENGES AND OUTCOMES","authors":"Valentina Poli, Maria Cristina Lavagnolo, Marina Basaglia, Tiziano Bonato, Silvia Zanatta, Michele Modesti","doi":"10.1016/j.jhazmat.2025.137974","DOIUrl":null,"url":null,"abstract":"The biodegradability of bioplastics in natural environments remains a highly debated topic within the scientific community. It is assessed primarily using the compostability standard EN 13432, although this, however, does not accurately reflect degradation processes occurring in aquatic environments. To verify the biodegradability of polylactic acid (PLA) in freshwater, two tests, differing only in the inoculum sampling location, were conducted according to EN ISO 14851:2019, measuring oxygen demand. However, to gain a comprehensive understanding, bioplastics biodegradation should be thoroughly investigated at multiple levels beyond oxygen consumption. Additional analyses, including morphological and thermal characterization of polymers and assessment of inoculum characteristics, are fundamental in providing valuable insights into degradation mechanisms. Biodegradability tests revealed low biodegradation rates (44.04% and 23.38%), with no evident weight change in PLA pellets during testing. Analytical techniques (FT-IR, DSC, SEM) indicated negligible visual or structural modifications between virgin and tested pellets. Therefore, under conditions specified by the standard PLA pellets did not undergo significant biodegradation in freshwater. Discrepancies between tests α and β suggested variability due to inoculum quality. A series of challenges persist when implementing this standard, including the lack of a threshold for use in clearly classifying a bioplastic as “biodegradable” and flexibility in selecting process parameters (e.g., test material shape and size, duration, temperature, inoculum percentage). Accordingly, to facilitate a reliable assessment of the biodegradability of bioplastics in freshwater, the EN ISO 14851:2019 standard should be amended and updated.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"197 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137974","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The biodegradability of bioplastics in natural environments remains a highly debated topic within the scientific community. It is assessed primarily using the compostability standard EN 13432, although this, however, does not accurately reflect degradation processes occurring in aquatic environments. To verify the biodegradability of polylactic acid (PLA) in freshwater, two tests, differing only in the inoculum sampling location, were conducted according to EN ISO 14851:2019, measuring oxygen demand. However, to gain a comprehensive understanding, bioplastics biodegradation should be thoroughly investigated at multiple levels beyond oxygen consumption. Additional analyses, including morphological and thermal characterization of polymers and assessment of inoculum characteristics, are fundamental in providing valuable insights into degradation mechanisms. Biodegradability tests revealed low biodegradation rates (44.04% and 23.38%), with no evident weight change in PLA pellets during testing. Analytical techniques (FT-IR, DSC, SEM) indicated negligible visual or structural modifications between virgin and tested pellets. Therefore, under conditions specified by the standard PLA pellets did not undergo significant biodegradation in freshwater. Discrepancies between tests α and β suggested variability due to inoculum quality. A series of challenges persist when implementing this standard, including the lack of a threshold for use in clearly classifying a bioplastic as “biodegradable” and flexibility in selecting process parameters (e.g., test material shape and size, duration, temperature, inoculum percentage). Accordingly, to facilitate a reliable assessment of the biodegradability of bioplastics in freshwater, the EN ISO 14851:2019 standard should be amended and updated.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.