Alex K. Chew, Mohammad Atif Faiz Afzal, Zachary Kaplan, Eric M. Collins, Suraj Gattani, Mayank Misra, Anand Chandrasekaran, Karl Leswing, Mathew D. Halls
{"title":"Leveraging high-throughput molecular simulations and machine learning for the design of chemical mixtures","authors":"Alex K. Chew, Mohammad Atif Faiz Afzal, Zachary Kaplan, Eric M. Collins, Suraj Gattani, Mayank Misra, Anand Chandrasekaran, Karl Leswing, Mathew D. Halls","doi":"10.1038/s41524-025-01552-2","DOIUrl":null,"url":null,"abstract":"<p>Mixtures of chemical ingredients, such as formulations, are ubiquitous in materials science, but optimizing their properties remains challenging due to the vast design space. Computational approaches offer a promising solution to traverse this space while minimizing trial-and-error experimentation. Using high-throughput classical molecular dynamics simulations, we generated a comprehensive dataset of over 30,000 solvent mixtures to evaluate three machine learning approaches that connect molecular structure and composition to property: formulation descriptor aggregation (FDA), formulation graph (FG), and Set2Set-based method (FDS2S). Our results demonstrate that our new FDS2S approach outperforms other approaches in predicting simulation-derived properties. Formulation-property relationships can reveal important substructures and identify promising formulations at least two to three times faster than random guessing. The models show robust transferability to experimental datasets, accurately predicting properties across energy, pharmaceutical, and petroleum applications. Our research demonstrates the utility of high-throughput simulations and machine learning tools to design formulations with promising properties.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"89 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01552-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mixtures of chemical ingredients, such as formulations, are ubiquitous in materials science, but optimizing their properties remains challenging due to the vast design space. Computational approaches offer a promising solution to traverse this space while minimizing trial-and-error experimentation. Using high-throughput classical molecular dynamics simulations, we generated a comprehensive dataset of over 30,000 solvent mixtures to evaluate three machine learning approaches that connect molecular structure and composition to property: formulation descriptor aggregation (FDA), formulation graph (FG), and Set2Set-based method (FDS2S). Our results demonstrate that our new FDS2S approach outperforms other approaches in predicting simulation-derived properties. Formulation-property relationships can reveal important substructures and identify promising formulations at least two to three times faster than random guessing. The models show robust transferability to experimental datasets, accurately predicting properties across energy, pharmaceutical, and petroleum applications. Our research demonstrates the utility of high-throughput simulations and machine learning tools to design formulations with promising properties.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.