Lanfeng Zhong , Kun Qian , Xin Liao , Zongyao Huang , Yang Liu , Shaoting Zhang , Guotai Wang
{"title":"UniSAL: Unified Semi-supervised Active Learning for histopathological image classification","authors":"Lanfeng Zhong , Kun Qian , Xin Liao , Zongyao Huang , Yang Liu , Shaoting Zhang , Guotai Wang","doi":"10.1016/j.media.2025.103542","DOIUrl":null,"url":null,"abstract":"<div><div>Histopathological image classification using deep learning is crucial for accurate and efficient cancer diagnosis. However, annotating a large amount of histopathological images for training is costly and time-consuming, leading to a scarcity of available labeled data for training deep neural networks. To reduce human efforts and improve efficiency for annotation, we propose a Unified Semi-supervised Active Learning framework (UniSAL) that effectively selects informative and representative samples for annotation. First, unlike most existing active learning methods that only train from labeled samples in each round, dual-view high-confidence pseudo training is proposed to utilize both labeled and unlabeled images to train a model for selecting query samples, where two networks operating on different augmented versions of an input image provide diverse pseudo labels for each other, and pseudo label-guided class-wise contrastive learning is introduced to obtain better feature representations for effective sample selection. Second, based on the trained model at each round, we design novel uncertain and representative sample selection strategy. It contains a Disagreement-aware Uncertainty Selector (DUS) to select informative uncertain samples with inconsistent predictions between the two networks, and a Compact Selector (CS) to remove redundancy of selected samples. We extensively evaluate our method on three public pathological image classification datasets, i.e., CRC5000, Chaoyang and CRC100K datasets, and the results demonstrate that our UniSAL significantly surpasses several state-of-the-art active learning methods, and reduces the annotation cost to around 10% to achieve a performance comparable to full annotation. Code is available at <span><span>https://github.com/HiLab-git/UniSAL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103542"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000891","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Histopathological image classification using deep learning is crucial for accurate and efficient cancer diagnosis. However, annotating a large amount of histopathological images for training is costly and time-consuming, leading to a scarcity of available labeled data for training deep neural networks. To reduce human efforts and improve efficiency for annotation, we propose a Unified Semi-supervised Active Learning framework (UniSAL) that effectively selects informative and representative samples for annotation. First, unlike most existing active learning methods that only train from labeled samples in each round, dual-view high-confidence pseudo training is proposed to utilize both labeled and unlabeled images to train a model for selecting query samples, where two networks operating on different augmented versions of an input image provide diverse pseudo labels for each other, and pseudo label-guided class-wise contrastive learning is introduced to obtain better feature representations for effective sample selection. Second, based on the trained model at each round, we design novel uncertain and representative sample selection strategy. It contains a Disagreement-aware Uncertainty Selector (DUS) to select informative uncertain samples with inconsistent predictions between the two networks, and a Compact Selector (CS) to remove redundancy of selected samples. We extensively evaluate our method on three public pathological image classification datasets, i.e., CRC5000, Chaoyang and CRC100K datasets, and the results demonstrate that our UniSAL significantly surpasses several state-of-the-art active learning methods, and reduces the annotation cost to around 10% to achieve a performance comparable to full annotation. Code is available at https://github.com/HiLab-git/UniSAL.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.