Segment Like A Doctor: Learning reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2025-03-13 DOI:10.1016/j.media.2025.103539
Liwen Zou , Yingying Cao , Ziwei Nie , Liang Mao , Yudong Qiu , Zhongqiu Wang , Zhenghua Cai , Xiaoping Yang
{"title":"Segment Like A Doctor: Learning reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation","authors":"Liwen Zou ,&nbsp;Yingying Cao ,&nbsp;Ziwei Nie ,&nbsp;Liang Mao ,&nbsp;Yudong Qiu ,&nbsp;Zhongqiu Wang ,&nbsp;Zhenghua Cai ,&nbsp;Xiaoping Yang","doi":"10.1016/j.media.2025.103539","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic cancer is a lethal invasive tumor with one of the worst prognosis. Accurate and reliable segmentation for pancreas and pancreatic cancer on computerized tomography (CT) images is vital in clinical diagnosis and treatment. Although certain deep learning-based techniques have been tentatively applied to this task, current performance of pancreatic cancer segmentation is far from meeting the clinical needs due to the tiny size, irregular shape and extremely uncertain boundary of the cancer. Besides, most of the existing studies are established on the black-box models which only learn the annotation distribution instead of the logical thinking and diagnostic experience of high-level medical experts, the latter is more credible and interpretable. To alleviate the above issues, we propose a novel <strong>S</strong>egment-<strong>L</strong>ike-<strong>A</strong>-<strong>D</strong>octor (<strong>SLAD</strong>) framework to learn the reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation on CT images. Specifically, SLAD aims to simulate the essential logical thinking and experience of doctors in the progressive diagnostic stages of pancreatic cancer: organ, lesion and boundary stage. Firstly, in the organ stage, an Anatomy-aware Masked AutoEncoder (AMAE) is introduced to model the doctors’ overall cognition for the anatomical distribution of abdominal organs on CT images by self-supervised pretraining. Secondly, in the lesion stage, a Causality-driven Graph Reasoning Module (CGRM) is designed to learn the global judgment of doctors for lesion detection by exploring topological feature difference between the causal lesion and the non-causal organ. Finally, in the boundary stage, a Diffusion-based Discrepancy Calibration Module (DDCM) is developed to fit the refined understanding of doctors for uncertain boundary of pancreatic cancer by inferring the ambiguous segmentation discrepancy based on the trustworthy lesion core. Experimental results on three independent datasets demonstrate that our approach boosts pancreatic cancer segmentation accuracy by <span><math><mrow><mn>4</mn><mtext>%–</mtext><mn>9</mn><mtext>%</mtext></mrow></math></span> compared with the state-of-the-art methods. Additionally, the tumor-vascular involvement analysis is also conducted to verify the superiority of our method in clinical applications. Our source codes will be publicly available at <span><span>https://github.com/ZouLiwen-1999/SLAD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103539"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000866","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer is a lethal invasive tumor with one of the worst prognosis. Accurate and reliable segmentation for pancreas and pancreatic cancer on computerized tomography (CT) images is vital in clinical diagnosis and treatment. Although certain deep learning-based techniques have been tentatively applied to this task, current performance of pancreatic cancer segmentation is far from meeting the clinical needs due to the tiny size, irregular shape and extremely uncertain boundary of the cancer. Besides, most of the existing studies are established on the black-box models which only learn the annotation distribution instead of the logical thinking and diagnostic experience of high-level medical experts, the latter is more credible and interpretable. To alleviate the above issues, we propose a novel Segment-Like-A-Doctor (SLAD) framework to learn the reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation on CT images. Specifically, SLAD aims to simulate the essential logical thinking and experience of doctors in the progressive diagnostic stages of pancreatic cancer: organ, lesion and boundary stage. Firstly, in the organ stage, an Anatomy-aware Masked AutoEncoder (AMAE) is introduced to model the doctors’ overall cognition for the anatomical distribution of abdominal organs on CT images by self-supervised pretraining. Secondly, in the lesion stage, a Causality-driven Graph Reasoning Module (CGRM) is designed to learn the global judgment of doctors for lesion detection by exploring topological feature difference between the causal lesion and the non-causal organ. Finally, in the boundary stage, a Diffusion-based Discrepancy Calibration Module (DDCM) is developed to fit the refined understanding of doctors for uncertain boundary of pancreatic cancer by inferring the ambiguous segmentation discrepancy based on the trustworthy lesion core. Experimental results on three independent datasets demonstrate that our approach boosts pancreatic cancer segmentation accuracy by 4%–9% compared with the state-of-the-art methods. Additionally, the tumor-vascular involvement analysis is also conducted to verify the superiority of our method in clinical applications. Our source codes will be publicly available at https://github.com/ZouLiwen-1999/SLAD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
LW-CTrans: A lightweight hybrid network of CNN and Transformer for 3D medical image segmentation Predicting infant brain connectivity with federated multi-trajectory GNNs using scarce data Segment Like A Doctor: Learning reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation UniSAL: Unified Semi-supervised Active Learning for histopathological image classification MonoPCC: Photometric-invariant cycle constraint for monocular depth estimation of endoscopic images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1