Thermal-induced structural behavior in CaO-doped ZrO2 nanocrystals: A high-temperature synchrotron XRD and XAS study

IF 5.45 Q1 Physics and Astronomy Nano-Structures & Nano-Objects Pub Date : 2025-03-17 DOI:10.1016/j.nanoso.2025.101470
Budi Hariyanto , Sufilman Ely , Allif Rosyidy Hilmi , Suttipong Wannapaiboon , Krongthong Kamonsuangkasem , Chatree Saiyasombat , Holilah , Sri Yani Purwaningsih , Malik Anjelh Baqiya , Retno Asih , Suminar Pratapa
{"title":"Thermal-induced structural behavior in CaO-doped ZrO2 nanocrystals: A high-temperature synchrotron XRD and XAS study","authors":"Budi Hariyanto ,&nbsp;Sufilman Ely ,&nbsp;Allif Rosyidy Hilmi ,&nbsp;Suttipong Wannapaiboon ,&nbsp;Krongthong Kamonsuangkasem ,&nbsp;Chatree Saiyasombat ,&nbsp;Holilah ,&nbsp;Sri Yani Purwaningsih ,&nbsp;Malik Anjelh Baqiya ,&nbsp;Retno Asih ,&nbsp;Suminar Pratapa","doi":"10.1016/j.nanoso.2025.101470","DOIUrl":null,"url":null,"abstract":"<div><div>The crystal and local structures of nanocrystalline undoped and CaO-doped ZrO<sub>2</sub> were investigated using high-temperature synchrotron X-ray powder diffraction (XRD) and X-ray absorption spectroscopy (XAS). Nanocrystalline ZrO<sub>2</sub> was synthesized via a co-precipitation method, whereas CaO-doped ZrO<sub>2</sub> was prepared through mechanochemical wet milling, using CaO derived from natural limestone as the dopant. High-temperature synchrotron XRD analysis showed the transformation of undoped and CaO-doped ZrO<sub>2</sub> from an amorphous state to a tetragonal phase, stable up to 1100 °C. The CaO-doped ZrO<sub>2</sub> required higher temperatures to achieve a fully tetragonal transformation compared to the undoped sample. At equivalent temperatures, Ca doping induced larger lattice parameters, reduced tetragonality, and slower unit-cell volume contraction. However, CaO-doped ZrO<sub>2</sub> with 5.0 mol% CaO dopant concentration following fast cooling at a rate of 50 °C/min induced the formation of minor phases, specifically m-ZrO<sub>2</sub> and CaZrO<sub>3</sub>. Furthermore, in situ extended X-ray absorption fine structure (EXAFS) analysis at 700 and 800 °C revealed that the Ca dopant elongated Zr-O<sub>I</sub> bonds by substituting Zr<sup>4+</sup> with larger Ca<sup>2+</sup> ions and forming oxygen vacancies, effectively suppressing atomic vibrations. The results reported here point out the structural adaptability of CaO-doped ZrO<sub>2</sub> nanocrystals, reinforcing their suitability for high-temperature applications.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"42 ","pages":"Article 101470"},"PeriodicalIF":5.4500,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X2500040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The crystal and local structures of nanocrystalline undoped and CaO-doped ZrO2 were investigated using high-temperature synchrotron X-ray powder diffraction (XRD) and X-ray absorption spectroscopy (XAS). Nanocrystalline ZrO2 was synthesized via a co-precipitation method, whereas CaO-doped ZrO2 was prepared through mechanochemical wet milling, using CaO derived from natural limestone as the dopant. High-temperature synchrotron XRD analysis showed the transformation of undoped and CaO-doped ZrO2 from an amorphous state to a tetragonal phase, stable up to 1100 °C. The CaO-doped ZrO2 required higher temperatures to achieve a fully tetragonal transformation compared to the undoped sample. At equivalent temperatures, Ca doping induced larger lattice parameters, reduced tetragonality, and slower unit-cell volume contraction. However, CaO-doped ZrO2 with 5.0 mol% CaO dopant concentration following fast cooling at a rate of 50 °C/min induced the formation of minor phases, specifically m-ZrO2 and CaZrO3. Furthermore, in situ extended X-ray absorption fine structure (EXAFS) analysis at 700 and 800 °C revealed that the Ca dopant elongated Zr-OI bonds by substituting Zr4+ with larger Ca2+ ions and forming oxygen vacancies, effectively suppressing atomic vibrations. The results reported here point out the structural adaptability of CaO-doped ZrO2 nanocrystals, reinforcing their suitability for high-temperature applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
期刊最新文献
Recent advancements in nanostructured flame-retardants: Types, mechanisms, and applications in polymer composites Thermal-induced structural behavior in CaO-doped ZrO2 nanocrystals: A high-temperature synchrotron XRD and XAS study Green synthesis of α-MnO2/Ag nanocomposite using Malva parviflora (Khabbaz) extract for antimicrobial activity Performance optimization of hybrid nano-engineered geopolymer binders-based ultra-high-performance concrete Radiative porosity sodium alginate hybrid nanofluid flow over an exponential stretching/shrinking surface: Dual solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1