{"title":"Industrial byproducts in concrete: A state-of-the-art review","authors":"Karan Moolchandani","doi":"10.1016/j.nxmate.2025.100593","DOIUrl":null,"url":null,"abstract":"<div><div>This state-of-the-art review evaluates the application of industrial byproducts—fly ash (FA), silica fume (SF), and marble slurry powder (MSP)—in concrete, emphasizing their standalone effects on fresh, mechanical, durability, and morphological properties. FA, derived from coal combustion, enhances workability, reduces hydration heat by 15–20 %, and improves long-term compressive strength by 25–30 %. SF, a byproduct of silicon alloy production, refines the microstructure, reduces permeability by 40 %, and increases early-age compressive strength by 30–35 %. MSP, generated as marble processing waste, acts as a filler, reducing porosity and improving flexural strength by 20 % while achieving around 9 % reduction in production costs at 15 % replacement level. The review identifies optimal replacement levels—FA (10–30 %), SF (5–15 %), and MSP (10–20 %)—to achieve improved performance and sustainability. Industrial byproducts in concrete contribute to significant environmental benefits, particularly through the reduction of CO₂ emissions. The incorporation of FA, SF, and MSP in concrete reduces CO₂ emissions primarily by lowering clinker demand, as cement production is a major contributor to global CO₂ emissions. Studies indicate that replacing 30–50 % of cement with FA and SF can achieve CO₂ reductions of 12–25 %, depending on mix design, clinker factor reduction, and curing conditions. MSP, primarily acting as a filler, contributes to minor reductions by partially replacing cement without additional pozzolanic reactivity. This review synthesizes findings from recent studies to assess the environmental benefits of these materials in concrete, demonstrating the transformative potential of industrial byproducts in creating high-performance and eco-efficient concrete.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100593"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982282500111X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This state-of-the-art review evaluates the application of industrial byproducts—fly ash (FA), silica fume (SF), and marble slurry powder (MSP)—in concrete, emphasizing their standalone effects on fresh, mechanical, durability, and morphological properties. FA, derived from coal combustion, enhances workability, reduces hydration heat by 15–20 %, and improves long-term compressive strength by 25–30 %. SF, a byproduct of silicon alloy production, refines the microstructure, reduces permeability by 40 %, and increases early-age compressive strength by 30–35 %. MSP, generated as marble processing waste, acts as a filler, reducing porosity and improving flexural strength by 20 % while achieving around 9 % reduction in production costs at 15 % replacement level. The review identifies optimal replacement levels—FA (10–30 %), SF (5–15 %), and MSP (10–20 %)—to achieve improved performance and sustainability. Industrial byproducts in concrete contribute to significant environmental benefits, particularly through the reduction of CO₂ emissions. The incorporation of FA, SF, and MSP in concrete reduces CO₂ emissions primarily by lowering clinker demand, as cement production is a major contributor to global CO₂ emissions. Studies indicate that replacing 30–50 % of cement with FA and SF can achieve CO₂ reductions of 12–25 %, depending on mix design, clinker factor reduction, and curing conditions. MSP, primarily acting as a filler, contributes to minor reductions by partially replacing cement without additional pozzolanic reactivity. This review synthesizes findings from recent studies to assess the environmental benefits of these materials in concrete, demonstrating the transformative potential of industrial byproducts in creating high-performance and eco-efficient concrete.