Sacha Dupin Gade, Gleison Lopes da Silva, João Gomes de Oliveira Neto, Maria Nayane Queiroz, Adenilson Oliveira dos Santos, Alysson Steimacher, Franciana Pedrochi
{"title":"Bioactive borate glass-hydroxyapatite composites: Influence of the sintering temperature on structural properties and in vitro bioactivity","authors":"Sacha Dupin Gade, Gleison Lopes da Silva, João Gomes de Oliveira Neto, Maria Nayane Queiroz, Adenilson Oliveira dos Santos, Alysson Steimacher, Franciana Pedrochi","doi":"10.1016/j.nxmate.2025.100589","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research efforts have focused on combining hydroxyapatite (HA) with various bioactive glasses to create composite materials for biomedical applications. This research aimed to develop a new group of hydroxyapatite/borate glass composites and to investigate the influence of sintering temperature in the structural properties and <em>in vitro</em> bioactivity. The composites were synthesized using two concentrations (25/75 wt% and 50/50 wt% - bioactive glass/hydroxyapatite) and two sintering temperatures (530 and 1000 °C). The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), <em>in vitro</em> bioactivity tests in simulated body fluid (SBF), and pH measurements. XRD and FT-IR analyses were performed before and after immersion in SBF solution. Before immersion in SBF, the composites, heat-treated at 530 °C, do not present additional phase formation. However, at 1000 °C, the composites present an NaCaPO<sub>4</sub> additional phase, due to the hydroxyapatite decomposition. XRD and FT-IR results, after immersion in SBF, confirmed the interaction between the ions from the composite and the ions present in the SBF solution. Composite 50BG_530 showed a silver chloride phase, indicating a potential antibacterial activity. 25BG_1000 presented an increase in the crystallinity of the HA phase, as a function of soaking time. Composite 50BG_1000 showed a decrease of NaCaPO<sub>4</sub> phase and an increase of HA's phase, improving the <em>in vitro</em> bioactivity. Based in these results, all composites presented good potential to be applied in bone regeneration.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100589"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research efforts have focused on combining hydroxyapatite (HA) with various bioactive glasses to create composite materials for biomedical applications. This research aimed to develop a new group of hydroxyapatite/borate glass composites and to investigate the influence of sintering temperature in the structural properties and in vitro bioactivity. The composites were synthesized using two concentrations (25/75 wt% and 50/50 wt% - bioactive glass/hydroxyapatite) and two sintering temperatures (530 and 1000 °C). The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), in vitro bioactivity tests in simulated body fluid (SBF), and pH measurements. XRD and FT-IR analyses were performed before and after immersion in SBF solution. Before immersion in SBF, the composites, heat-treated at 530 °C, do not present additional phase formation. However, at 1000 °C, the composites present an NaCaPO4 additional phase, due to the hydroxyapatite decomposition. XRD and FT-IR results, after immersion in SBF, confirmed the interaction between the ions from the composite and the ions present in the SBF solution. Composite 50BG_530 showed a silver chloride phase, indicating a potential antibacterial activity. 25BG_1000 presented an increase in the crystallinity of the HA phase, as a function of soaking time. Composite 50BG_1000 showed a decrease of NaCaPO4 phase and an increase of HA's phase, improving the in vitro bioactivity. Based in these results, all composites presented good potential to be applied in bone regeneration.