{"title":"A modified point estimate-based probabilistic load flow approach for improving tail accuracy in wind-integrated power systems","authors":"Vikas Singh, Tukaram Moger, Debashisha Jena","doi":"10.1016/j.epsr.2025.111606","DOIUrl":null,"url":null,"abstract":"<div><div>Modern power systems confront risks, including demand variations and forced outages of traditional generators. Moreover, the extensive grid integration of new energy generation has exacerbated the uncertainty because of its intermittent nature. The Hong’s three-point estimation method (3PEM) for performing probabilistic load flow (PLF) is commonly used to cope with power system uncertainties; however, it has poor tail accuracy. To overcome this issue, the basic 3PEM is modified by adding a new pair of tail points. This modified 3PEM (MH3PEM) is equivalent to 5PEM but utilize reduced order moments. Also, a hybrid Hong-Harr PEM approach is proposed to efficiently deal with a mixture of independent and correlated input variables. The input variables’ correlation is modeled using the Nataf transformation. The proposed approaches are tested on wind farm-integrated 24-bus and 72-bus equivalent systems, and their findings are compared with the fundamental PEM schemes. Utilizing the Monte-Carlo simulation as a reference, the MH3PEM provides the most accurate results with a low computational burden.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"245 ","pages":"Article 111606"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625001981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Modern power systems confront risks, including demand variations and forced outages of traditional generators. Moreover, the extensive grid integration of new energy generation has exacerbated the uncertainty because of its intermittent nature. The Hong’s three-point estimation method (3PEM) for performing probabilistic load flow (PLF) is commonly used to cope with power system uncertainties; however, it has poor tail accuracy. To overcome this issue, the basic 3PEM is modified by adding a new pair of tail points. This modified 3PEM (MH3PEM) is equivalent to 5PEM but utilize reduced order moments. Also, a hybrid Hong-Harr PEM approach is proposed to efficiently deal with a mixture of independent and correlated input variables. The input variables’ correlation is modeled using the Nataf transformation. The proposed approaches are tested on wind farm-integrated 24-bus and 72-bus equivalent systems, and their findings are compared with the fundamental PEM schemes. Utilizing the Monte-Carlo simulation as a reference, the MH3PEM provides the most accurate results with a low computational burden.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.