The influence of hydrating mineral components on wellbore sealing capacity of salt-plugged wells

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS Geomechanics for Energy and the Environment Pub Date : 2025-03-08 DOI:10.1016/j.gete.2025.100661
Suzanne J.T. Hangx, Timotheus K.T. Wolterbeek , Max J. Bruggeman , Oliver Plümper
{"title":"The influence of hydrating mineral components on wellbore sealing capacity of salt-plugged wells","authors":"Suzanne J.T. Hangx,&nbsp;Timotheus K.T. Wolterbeek ,&nbsp;Max J. Bruggeman ,&nbsp;Oliver Plümper","doi":"10.1016/j.gete.2025.100661","DOIUrl":null,"url":null,"abstract":"<div><div>Rock salt forms an important hydrocarbon caprock and a source for salt (solution) mining. With many associated wells approaching the end of their lifetime, effective <em>Plugging &amp; Abandonment</em> strategies are required. At the same time, as the energy transition progresses, many new wells will likely be drilled for specific use during geological CO<sub>2</sub> storage or temporary hydrogen storage. These wells, too, will eventually need to be plugged and abandoned safely. We investigated the sealing effectiveness of a potential alternative for Portland cement as plugging material, consisting of a mixture of metal oxides (CaO, MgO) and salt (NaCl), wherein hydration leads to significant volumetric expansions. In 11 out of 17 flow-through experiments, the apparent plug permeability fell to 10<sup>−17</sup>–10<sup>−18</sup> m<sup>2</sup> upon hydration, under differential pressures of 0.2–1.8 MPa. One CaO:NaCl sample could withstand up to 2 MPa differential pressure across its 5-cm-length, attaining a minimum apparent permeability of 10<sup>−21</sup> m<sup>2</sup>. Apparent plug permeability correlated closely with the expected final solid volume fraction, i.e., the amount of void space remaining. Upscaling to realistic wellbore dimensions (10–100 m) suggests that expanding metal oxide-salt plugs set in steel casing could withstand differential pressures of 3.6–40 MPa/m. For evaporitic caprocks, this implies that metal oxide-salt plugs can be a potential alternative to conventional Portland cement, ensuring plug closure and potentially sealing within several hours. However, sealing highly depends on the amount of metal oxide available and the volume of void space requiring closure.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100661"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000267","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Rock salt forms an important hydrocarbon caprock and a source for salt (solution) mining. With many associated wells approaching the end of their lifetime, effective Plugging & Abandonment strategies are required. At the same time, as the energy transition progresses, many new wells will likely be drilled for specific use during geological CO2 storage or temporary hydrogen storage. These wells, too, will eventually need to be plugged and abandoned safely. We investigated the sealing effectiveness of a potential alternative for Portland cement as plugging material, consisting of a mixture of metal oxides (CaO, MgO) and salt (NaCl), wherein hydration leads to significant volumetric expansions. In 11 out of 17 flow-through experiments, the apparent plug permeability fell to 10−17–10−18 m2 upon hydration, under differential pressures of 0.2–1.8 MPa. One CaO:NaCl sample could withstand up to 2 MPa differential pressure across its 5-cm-length, attaining a minimum apparent permeability of 10−21 m2. Apparent plug permeability correlated closely with the expected final solid volume fraction, i.e., the amount of void space remaining. Upscaling to realistic wellbore dimensions (10–100 m) suggests that expanding metal oxide-salt plugs set in steel casing could withstand differential pressures of 3.6–40 MPa/m. For evaporitic caprocks, this implies that metal oxide-salt plugs can be a potential alternative to conventional Portland cement, ensuring plug closure and potentially sealing within several hours. However, sealing highly depends on the amount of metal oxide available and the volume of void space requiring closure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
期刊最新文献
Study on novel alkali-activated cementitious grout for scour control of offshore foundation Designing a repository in domal salt: The influence of design variants in different modelling environments Settlement analysis in the context of underground climate change Experimental study of evaporation from soil-atmosphere interfaces Impact of flow direction and soil characteristics on suffusion susceptibility: Analyzing soil resistance and filtration effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1