Physicochemical Properties and Biocompatibility of Injectable Hydroxyapatite Cement and Its Application in Compressive Tibial Plateau Fractures

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-03-18 DOI:10.1002/jbm.b.35565
Xiaoli Zhou, Xiang Sun, Guangdong Chen, Yang Chen, Zepei Zhang, Zhiyong Qian, Qiang Zeng, Jun Miao
{"title":"Physicochemical Properties and Biocompatibility of Injectable Hydroxyapatite Cement and Its Application in Compressive Tibial Plateau Fractures","authors":"Xiaoli Zhou,&nbsp;Xiang Sun,&nbsp;Guangdong Chen,&nbsp;Yang Chen,&nbsp;Zepei Zhang,&nbsp;Zhiyong Qian,&nbsp;Qiang Zeng,&nbsp;Jun Miao","doi":"10.1002/jbm.b.35565","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Injectable carbonated hydroxyapatite (ICHA) cement was developed by adding 2% Hydroxypropyl methylcellulose (HPMC) to carbonated hydroxyapatite (CHA) cement, improving its rheological properties and injectability for minimally invasive orthopedic use. The cement's physical and chemical properties, including curing time, strength, porosity, and consistency, were tested in vitro. Scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to analyze the cured cement. Bone marrow stromal cells were cultured with ICHA cement extracts and specimens to test cell growth (MTT assay) and cytotoxicity. In vivo, the cement was implanted into rabbit muscles to assess inflammation and capsule formation, along with other biocompatibility tests, including hemolysis and pyrogen testing. ICHA cement sets without heat generation, with a 9-min initial setting time and a 15-min final setting time, similar to CHA cement. The strength reaches 20 MPa after 1 day and peaks at 35 MPa after 7 days. Its porosity is slightly higher than CHA cement, and it resists dilution well, preventing disintegration in water. The consistency of ICHA cement is lower than CHA cement at different time points (<i>p</i> &lt; 0.001), showing a logarithmic change pattern. With adjustable setting time, good resistance to dilution, and compressive strength similar to cancellous bone, ICHA cement is well suited for clinical use. Its composition closely resembles natural bone, offering strong fixation and stability for tibial plateau healing, which supports early movement and reduces the risk of joint stiffness and post-traumatic arthritis.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35565","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Injectable carbonated hydroxyapatite (ICHA) cement was developed by adding 2% Hydroxypropyl methylcellulose (HPMC) to carbonated hydroxyapatite (CHA) cement, improving its rheological properties and injectability for minimally invasive orthopedic use. The cement's physical and chemical properties, including curing time, strength, porosity, and consistency, were tested in vitro. Scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to analyze the cured cement. Bone marrow stromal cells were cultured with ICHA cement extracts and specimens to test cell growth (MTT assay) and cytotoxicity. In vivo, the cement was implanted into rabbit muscles to assess inflammation and capsule formation, along with other biocompatibility tests, including hemolysis and pyrogen testing. ICHA cement sets without heat generation, with a 9-min initial setting time and a 15-min final setting time, similar to CHA cement. The strength reaches 20 MPa after 1 day and peaks at 35 MPa after 7 days. Its porosity is slightly higher than CHA cement, and it resists dilution well, preventing disintegration in water. The consistency of ICHA cement is lower than CHA cement at different time points (p < 0.001), showing a logarithmic change pattern. With adjustable setting time, good resistance to dilution, and compressive strength similar to cancellous bone, ICHA cement is well suited for clinical use. Its composition closely resembles natural bone, offering strong fixation and stability for tibial plateau healing, which supports early movement and reduces the risk of joint stiffness and post-traumatic arthritis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Physicochemical Properties and Biocompatibility of Injectable Hydroxyapatite Cement and Its Application in Compressive Tibial Plateau Fractures Issue Information Effect of Tricalcium Phosphate Foam and Paste Bone Grafting Materials Designed for Improved Surgical Handling on Osteogenesis in a Sheep Scapula Model Piezoelectric Biomaterials for Use in Bone Tissue Engineering—A Narrative Review Influence of Applied Pressure and Thickness Variation on the Bond Strength Between 3Y-TZP Zirconia and Self-Adhesive Resin Cement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1