Qiangsheng Hu, Chong Jiang, Yi Qin, Borui Li, Jingyi Wang, Ting Wang, Shunrong Ji, Zeng Ye, Qing Dang, Mingyang Liu, Xianjun Yu, Xiaowu Xu
{"title":"Pentose Phosphate Recycling driven by Gli1 contributes to chemotherapy resistance in Cancer Cells.","authors":"Qiangsheng Hu, Chong Jiang, Yi Qin, Borui Li, Jingyi Wang, Ting Wang, Shunrong Ji, Zeng Ye, Qing Dang, Mingyang Liu, Xianjun Yu, Xiaowu Xu","doi":"10.1016/j.canlet.2025.217633","DOIUrl":null,"url":null,"abstract":"<p><p>The Hedgehog Signaling Pathway plays an important role in cancer development and chemotherapy resistance. However, whether the pathway functions depend on the metabolic reprogramming of cancer cells has not been well studied. In this study, we found that the expression level of Gli1, a key transcription factor downstream of the Hedgehog Signaling Pathway, is significantly increased in patients with pancreatic cancer resistant to gemcitabine neoadjuvant chemotherapy. Through metabolomics analysis, we confirmed that Gli1 can promote the transformation of cancer cells from a glycolytic-dominated metabolic pattern to a unique metabolic pattern called \"Pentose Phosphate Recycling\". Transcriptome sequencing and in vitro experiments suggest that Gli1 promotes pentose phosphate recycling through transcriptional activation of key enzymes Phosphogluconate dehydrogenase (PGD) and Transketolase (TKT). The identified metabolic rerouting in oxidative and non-oxidative pentose phosphate pathway has important physiological roles in maximizing NADPH reduction and nucleotide synthesis. Therefore, the pentose phosphate cycle driven by Gli1 can resist gemcitabine-induced DNA damage by promoting pyrimidine synthesis and resist gemcitabine-induced ferroptosis by scavenging lipid Reactive Oxygen Species (Lipid ROS). Combining the Gli1 inhibitor GANT21 with gemcitabine exerts a maximal tumour suppressor effect by simultaneously promoting DNA damage and ferroptosis. Collectively, these results reveal that Gli1 drives chemotherapy resistance in cancer cells by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for reversing chemotherapy resistance.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217633"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217633","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hedgehog Signaling Pathway plays an important role in cancer development and chemotherapy resistance. However, whether the pathway functions depend on the metabolic reprogramming of cancer cells has not been well studied. In this study, we found that the expression level of Gli1, a key transcription factor downstream of the Hedgehog Signaling Pathway, is significantly increased in patients with pancreatic cancer resistant to gemcitabine neoadjuvant chemotherapy. Through metabolomics analysis, we confirmed that Gli1 can promote the transformation of cancer cells from a glycolytic-dominated metabolic pattern to a unique metabolic pattern called "Pentose Phosphate Recycling". Transcriptome sequencing and in vitro experiments suggest that Gli1 promotes pentose phosphate recycling through transcriptional activation of key enzymes Phosphogluconate dehydrogenase (PGD) and Transketolase (TKT). The identified metabolic rerouting in oxidative and non-oxidative pentose phosphate pathway has important physiological roles in maximizing NADPH reduction and nucleotide synthesis. Therefore, the pentose phosphate cycle driven by Gli1 can resist gemcitabine-induced DNA damage by promoting pyrimidine synthesis and resist gemcitabine-induced ferroptosis by scavenging lipid Reactive Oxygen Species (Lipid ROS). Combining the Gli1 inhibitor GANT21 with gemcitabine exerts a maximal tumour suppressor effect by simultaneously promoting DNA damage and ferroptosis. Collectively, these results reveal that Gli1 drives chemotherapy resistance in cancer cells by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for reversing chemotherapy resistance.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.