Abnormal high yield strength and strain softening in a metastable β titanium alloy at room temperature

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-03-17 DOI:10.1016/j.ijplas.2025.104310
Tianle Li, Ning Xu, Xiang Wu, Jiaobao Liu, Xiaochun Liu, Xifeng Li
{"title":"Abnormal high yield strength and strain softening in a metastable β titanium alloy at room temperature","authors":"Tianle Li, Ning Xu, Xiang Wu, Jiaobao Liu, Xiaochun Liu, Xifeng Li","doi":"10.1016/j.ijplas.2025.104310","DOIUrl":null,"url":null,"abstract":"Understanding the relationship between deformation behaviors and mechanisms is significant for the processing and application of metastable β titanium alloys. Here we aim to investigate and evaluate the abnormal yield strength and strain softening of a Ti-15.1Mo-2.77Nb-3.1Al-0.21Si alloy at room temperature. This alloy exhibits a high yield strength of 970 MPa, followed by the continuous stress drop behavior in the entire engineering strains (or true strains of 0.018 ∼ 0.056). Digital image correlation (DIC) reveals that the flow stress drop results from local strain softening associated with a local increase in strain rate, instead of Lüders strain. The pinning between dislocations and Si atoms as well as other interstitial atoms at and near grain boundaries is mainly responsible for the high yield strength. Subsequently, dislocations originating from grain boundaries can easily slip in a planar pattern along the {110} <111> slip systems, resulting in a continuous stress drop. In addition, both the low density of dislocations within β grains and large grain size also provide favorable conditions for dislocation slip over a long distance. This study reveals the mechanisms of both high yield strength and strain softening in the metastable β Ti alloys.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"196 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104310","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relationship between deformation behaviors and mechanisms is significant for the processing and application of metastable β titanium alloys. Here we aim to investigate and evaluate the abnormal yield strength and strain softening of a Ti-15.1Mo-2.77Nb-3.1Al-0.21Si alloy at room temperature. This alloy exhibits a high yield strength of 970 MPa, followed by the continuous stress drop behavior in the entire engineering strains (or true strains of 0.018 ∼ 0.056). Digital image correlation (DIC) reveals that the flow stress drop results from local strain softening associated with a local increase in strain rate, instead of Lüders strain. The pinning between dislocations and Si atoms as well as other interstitial atoms at and near grain boundaries is mainly responsible for the high yield strength. Subsequently, dislocations originating from grain boundaries can easily slip in a planar pattern along the {110} <111> slip systems, resulting in a continuous stress drop. In addition, both the low density of dislocations within β grains and large grain size also provide favorable conditions for dislocation slip over a long distance. This study reveals the mechanisms of both high yield strength and strain softening in the metastable β Ti alloys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Quantifying power partitioning during void growth for dynamic mechanical loading in reduced form Deformation Mechanism of Non-textured and Basal-textured Polycrystalline Mg Alloys: A Coupled Crystal Plasticity-Twinning Phase Field Simulation Tailoring fracture resistance of a metastable Fe42Mn28Co10Cr15Si5 high entropy alloy by intrinsic toughening Abnormal high yield strength and strain softening in a metastable β titanium alloy at room temperature Modulating L12 precipitation behavior and mechanical properties in an Fe-rich medium-entropy alloy fabricated via laser powder bed fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1