Modulating L12 precipitation behavior and mechanical properties in an Fe-rich medium-entropy alloy fabricated via laser powder bed fusion

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-03-17 DOI:10.1016/j.ijplas.2025.104290
Shidong Wang , Wenhua Wu , Yuxuan Zhao , Yue Sun , Chenghao Song , Youyou Zhang , Gang Sha , Zengbao Jiao , Tao Yang , Hao Chen
{"title":"Modulating L12 precipitation behavior and mechanical properties in an Fe-rich medium-entropy alloy fabricated via laser powder bed fusion","authors":"Shidong Wang ,&nbsp;Wenhua Wu ,&nbsp;Yuxuan Zhao ,&nbsp;Yue Sun ,&nbsp;Chenghao Song ,&nbsp;Youyou Zhang ,&nbsp;Gang Sha ,&nbsp;Zengbao Jiao ,&nbsp;Tao Yang ,&nbsp;Hao Chen","doi":"10.1016/j.ijplas.2025.104290","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the effects of different annealing treatments before identical aging on precipitation and mechanical properties of an L1<sub>2</sub>-strengthened Fe-rich medium-entropy alloy (Fe-MEA) fabricated by laser powder bed fusion (L-PBF). These treatments result in distinct final microstructures characterized by either discontinuous precipitation (DP) or continuous precipitation (CP) dominance, accompanied by varied mechanical properties. The high-density dislocations and coarse grains induced by L-PBF promote CP. In contrast, the fine grains formed via L-PBF and the reduced dislocation density through annealing enhance DP, leading to grain refinement. The L-PBF Fe-MEA subjected to various post-printing heat treatments also demonstrates acceptable mechanical properties. It is revealed that the stacking fault energy (SFE) of the face-centered cubic (fcc) matrix in the direct-aged sample is sufficiently low to facilitate the formation of deformation-induced twinning and stacking faults (SFs) in both the CP and DP regions, indicating that both regions exhibit good deformation capacity. Additionally, hetero-deformation-induced (HDI) strengthening significantly contributes to the strength of the studied samples. In the annealing-aged samples, HDI strengthening primarily originates from the heterogeneous distribution of grains and precipitates (fine grains containing DP and coarse grain including CP). In contrast, in the direct-aged sample, HDI strengthening is attributed not only to the heterogeneous grains and precipitates but also to the heterogeneous dislocation structure. This work may provide guidance for modulating L1<sub>2</sub> precipitation behavior and mechanical properties of high/medium-entropy alloys (H/MEAs) fabricated by L-PBF.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"188 ","pages":"Article 104290"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074964192500049X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the effects of different annealing treatments before identical aging on precipitation and mechanical properties of an L12-strengthened Fe-rich medium-entropy alloy (Fe-MEA) fabricated by laser powder bed fusion (L-PBF). These treatments result in distinct final microstructures characterized by either discontinuous precipitation (DP) or continuous precipitation (CP) dominance, accompanied by varied mechanical properties. The high-density dislocations and coarse grains induced by L-PBF promote CP. In contrast, the fine grains formed via L-PBF and the reduced dislocation density through annealing enhance DP, leading to grain refinement. The L-PBF Fe-MEA subjected to various post-printing heat treatments also demonstrates acceptable mechanical properties. It is revealed that the stacking fault energy (SFE) of the face-centered cubic (fcc) matrix in the direct-aged sample is sufficiently low to facilitate the formation of deformation-induced twinning and stacking faults (SFs) in both the CP and DP regions, indicating that both regions exhibit good deformation capacity. Additionally, hetero-deformation-induced (HDI) strengthening significantly contributes to the strength of the studied samples. In the annealing-aged samples, HDI strengthening primarily originates from the heterogeneous distribution of grains and precipitates (fine grains containing DP and coarse grain including CP). In contrast, in the direct-aged sample, HDI strengthening is attributed not only to the heterogeneous grains and precipitates but also to the heterogeneous dislocation structure. This work may provide guidance for modulating L12 precipitation behavior and mechanical properties of high/medium-entropy alloys (H/MEAs) fabricated by L-PBF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Quantifying power partitioning during void growth for dynamic mechanical loading in reduced form Deformation Mechanism of Non-textured and Basal-textured Polycrystalline Mg Alloys: A Coupled Crystal Plasticity-Twinning Phase Field Simulation Tailoring fracture resistance of a metastable Fe42Mn28Co10Cr15Si5 high entropy alloy by intrinsic toughening Abnormal high yield strength and strain softening in a metastable β titanium alloy at room temperature Modulating L12 precipitation behavior and mechanical properties in an Fe-rich medium-entropy alloy fabricated via laser powder bed fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1