Transport Number Determination and Relevance for Lithium Metal Batteries Using Localized Highly Concentrated Electrolytes

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-03-17 DOI:10.1021/acs.chemmater.4c03067
Hafiz Ahmad Ishfaq, Carolina Cruz Cardona, Elena Tchernychova, Patrik Johansson, Miran Gaberšček, Robert Dominko, Sara Drvarič Talian
{"title":"Transport Number Determination and Relevance for Lithium Metal Batteries Using Localized Highly Concentrated Electrolytes","authors":"Hafiz Ahmad Ishfaq, Carolina Cruz Cardona, Elena Tchernychova, Patrik Johansson, Miran Gaberšček, Robert Dominko, Sara Drvarič Talian","doi":"10.1021/acs.chemmater.4c03067","DOIUrl":null,"url":null,"abstract":"The lithium transport number <i></i><span style=\"color: inherit;\"><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span><span style=\"margin-right: 0.05em;\"><span>t</span></span><span style=\"vertical-align: -0.4em;\"><span><span style=\"margin-right: 0.05em;\"><span>Li</span></span><span style=\"vertical-align: 0.5em;\"><span>+</span></span></span></span></span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span></span></span><span style=\"\" tabindex=\"0\"><nobr><span><span style=\"display: inline-block; position: relative; width: 0em; height: 0px; font-size: 110%;\"><span style=\"position: absolute;\"><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span><span style=\"display: inline-block; position: relative; width: 1.423em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.241em, 1000.29em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑡</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 0.344em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.63em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">Li</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.259em; left: 0.628em;\"><span><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">+</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span></span></span></nobr></span><script type=\"math/mml\"><math display=\"inline\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>Li</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mo stretchy=\"false\">)</mo></math></script> determination of fluorinated ether (1,2-(1,1,2,2-tetrafluoroethoxy) ethane, TFEE)-based localized highly concentrated electrolytes (LHCEs) with 1,2-dioxolane (DOL) and dimethoxyethane (DME) as solvents has been explored using molecular dynamics simulations, nuclear magnetic resonance spectroscopy, Bruce-Vincent’s method, and low-frequency electrochemical impedance spectroscopy (EIS). We showcase that the TFEE-DOL LHCE has a <i></i><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>t</span></span><span style=\"vertical-align: -0.4em;\"><span><span style=\"margin-right: 0.05em;\"><span>Li</span></span><span style=\"vertical-align: 0.5em;\"><span>+</span></span></span></span></span></span></span><span style=\"\" tabindex=\"0\"><nobr><span><span style=\"display: inline-block; position: relative; width: 0em; height: 0px; font-size: 110%;\"><span style=\"position: absolute;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.423em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.241em, 1000.29em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑡</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 0.344em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.63em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">Li</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.259em; left: 0.628em;\"><span><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">+</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span></span></span></span></nobr></span><script type=\"math/mml\"><math display=\"inline\"><msub><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>Li</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></script> as high as 0.65 but, on the other hand, exhibits low Coulombic efficiency (&lt;90%) and poor stability <i>vs</i> Li metal anodes, <i>i.e.</i>, in a lithium metal battery (LMB) setting. In contrast, the TFEE-DME LHCE shows high Coulombic efficiency (98.9%) and stability, despite a much lower <i></i><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>t</span></span><span style=\"vertical-align: -0.4em;\"><span><span style=\"margin-right: 0.05em;\"><span>Li</span></span><span style=\"vertical-align: 0.5em;\"><span>+</span></span></span></span></span></span></span><span style=\"\" tabindex=\"0\"><nobr><span><span style=\"display: inline-block; position: relative; width: 0em; height: 0px; font-size: 110%;\"><span style=\"position: absolute;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.423em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.241em, 1000.29em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑡</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 0.344em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.63em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">Li</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.259em; left: 0.628em;\"><span><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">+</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span></span></span></span></nobr></span><script type=\"math/mml\"><math display=\"inline\"><msub><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>Li</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></script> (0.25). A significant migration resistance through the porous solid electrolyte interphase (SEI) for the former is the likely explanation, as revealed by EIS and assisted by scanning electron microscopy and X-ray photoelectron spectroscopy experiments. We thus find the interfacial properties at the Li metal anode to be more crucial than the ionic transport through the bulk of the electrolyte for LMB performance. We therefore propose that the focus should be put on the full (<i>operando</i>) impedance spectra of Li metal anodes in contact with electrolytes, since it enables the characterization of the interphase layer(s), rather than solely determining the (bulk) <i></i><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>t</span></span><span style=\"vertical-align: -0.4em;\"><span><span style=\"margin-right: 0.05em;\"><span>Li</span></span><span style=\"vertical-align: 0.5em;\"><span>+</span></span></span></span></span></span></span><span style=\"\" tabindex=\"0\"><nobr><span><span style=\"display: inline-block; position: relative; width: 0em; height: 0px; font-size: 110%;\"><span style=\"position: absolute;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.423em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.241em, 1000.29em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑡</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.747em; left: 0.344em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.63em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">Li</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -4.259em; left: 0.628em;\"><span><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">+</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span></span></span></span></nobr></span><script type=\"math/mml\"><math display=\"inline\"><msub><mrow><mi>t</mi></mrow><mrow><msup><mrow><mi>Li</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub></math></script> of the electrolytes.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"31 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lithium transport number (tLi+)(𝑡Li+) determination of fluorinated ether (1,2-(1,1,2,2-tetrafluoroethoxy) ethane, TFEE)-based localized highly concentrated electrolytes (LHCEs) with 1,2-dioxolane (DOL) and dimethoxyethane (DME) as solvents has been explored using molecular dynamics simulations, nuclear magnetic resonance spectroscopy, Bruce-Vincent’s method, and low-frequency electrochemical impedance spectroscopy (EIS). We showcase that the TFEE-DOL LHCE has a tLi+𝑡Li+ as high as 0.65 but, on the other hand, exhibits low Coulombic efficiency (<90%) and poor stability vs Li metal anodes, i.e., in a lithium metal battery (LMB) setting. In contrast, the TFEE-DME LHCE shows high Coulombic efficiency (98.9%) and stability, despite a much lower tLi+𝑡Li+ (0.25). A significant migration resistance through the porous solid electrolyte interphase (SEI) for the former is the likely explanation, as revealed by EIS and assisted by scanning electron microscopy and X-ray photoelectron spectroscopy experiments. We thus find the interfacial properties at the Li metal anode to be more crucial than the ionic transport through the bulk of the electrolyte for LMB performance. We therefore propose that the focus should be put on the full (operando) impedance spectra of Li metal anodes in contact with electrolytes, since it enables the characterization of the interphase layer(s), rather than solely determining the (bulk) tLi+𝑡Li+ of the electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Model Development and Field Testing of a Heavy-Duty Gas-Turbine Generator
IF 6.6 1区 工程技术IEEE Transactions on Power SystemsPub Date : 2008-04-22 DOI: 10.1109/TPWRS.2008.920198
Pouyan Pourbeik;Fhedzisani Modau
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
In Situ Heterostructure Formation of NaSbS2 and Na2Sb4S7 for Efficient Photogenerated Charge Separation High-Pressure Phase Transition of Metastable Wurtzite-Like CuInSe2 Nanocrystals Symmetry over Chemistry: Harmonic Generation of Low-Dimensional Alkali Chalcopnictates RbMP2S6 (M = Sb, Bi) Boosting the Thermoelectric Properties of Textured BiSbSe3 via Versatile CuI Compositing Synergistically Regulating D-Band Centers of Cd0.5Zn0.5S/LaCoO3 Heterojunction by Dual Electric Fields for Enhanced Photocatalytic Hydrogen Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1