Ultra-Microporous Zinc-Diaminotriazolate-Oxalate Metal Organic Framework with Nonlayered-Pillared Structure Showing High Carbon Dioxide Uptakes at Low Partial Pressures
Piyush Singh, Himan Dev Singh, Pragalbh Shekhar, Chitvan Jain, Ping Song, Mahsa Loloei, Michael Edwin, Yan Gao, Nima Masoumifard, Ramanathan Vaidhyanathan
{"title":"Ultra-Microporous Zinc-Diaminotriazolate-Oxalate Metal Organic Framework with Nonlayered-Pillared Structure Showing High Carbon Dioxide Uptakes at Low Partial Pressures","authors":"Piyush Singh, Himan Dev Singh, Pragalbh Shekhar, Chitvan Jain, Ping Song, Mahsa Loloei, Michael Edwin, Yan Gao, Nima Masoumifard, Ramanathan Vaidhyanathan","doi":"10.1021/acs.chemmater.4c03231","DOIUrl":null,"url":null,"abstract":"We report a zinc-diaminotriazolato-oxalate metal–organic framework <b>(IISERP-MOF36, 1)</b> inspired by the exceptional CO<sub>2</sub> selectivity demonstrated by its triazolate analogue, CALF-20. Unlike the CALF-20 family, <b>1</b> adopts a nonlayered, pillared structure, despite their similar composition. The 1D ultramicroporous channels in this MOF enhance strong interactions with the carbon dioxide CO<sub>2</sub>. Additionally, the t-shaped orientation of CO<sub>2</sub> molecules within the pores promotes cooperative CO<sub>2</sub>–CO<sub>2</sub> interactions, resulting in superior low-pressure CO<sub>2</sub> uptake compared to that of CALF-20. This suggests that <b>1</b> has potential as a sorbent in applications such as the natural gas combined cycle or direct air capture. However, despite its structural and compositional similarities to CALF-20, <b>1</b> exhibits reduced hydrophobicity due to subtle differences in the pore environment. These findings open possibilities for designing advanced sorbents combining the best characteristics of both of these MOFs.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"43 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03231","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a zinc-diaminotriazolato-oxalate metal–organic framework (IISERP-MOF36, 1) inspired by the exceptional CO2 selectivity demonstrated by its triazolate analogue, CALF-20. Unlike the CALF-20 family, 1 adopts a nonlayered, pillared structure, despite their similar composition. The 1D ultramicroporous channels in this MOF enhance strong interactions with the carbon dioxide CO2. Additionally, the t-shaped orientation of CO2 molecules within the pores promotes cooperative CO2–CO2 interactions, resulting in superior low-pressure CO2 uptake compared to that of CALF-20. This suggests that 1 has potential as a sorbent in applications such as the natural gas combined cycle or direct air capture. However, despite its structural and compositional similarities to CALF-20, 1 exhibits reduced hydrophobicity due to subtle differences in the pore environment. These findings open possibilities for designing advanced sorbents combining the best characteristics of both of these MOFs.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.