Multivariant interfacial/ferroelectric/dipole polarization strengthened microwave-catalysis eradicates deep bacteria-infected osteomyelitis

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-03-18 DOI:10.1016/j.jmst.2025.01.044
Liguo Jin, Hanpeng Liu, Congyang Mao, Chaofeng Wang, Shuilin Wu, Khin Wee Lai, Yu Zhang, Zhaoyang Li, Shengli Zhu, Hui Jiang, Zhenduo Cui, Jie Shen, Yufeng Zheng, Xiangmei Liu
{"title":"Multivariant interfacial/ferroelectric/dipole polarization strengthened microwave-catalysis eradicates deep bacteria-infected osteomyelitis","authors":"Liguo Jin, Hanpeng Liu, Congyang Mao, Chaofeng Wang, Shuilin Wu, Khin Wee Lai, Yu Zhang, Zhaoyang Li, Shengli Zhu, Hui Jiang, Zhenduo Cui, Jie Shen, Yufeng Zheng, Xiangmei Liu","doi":"10.1016/j.jmst.2025.01.044","DOIUrl":null,"url":null,"abstract":"Osteomyelitis is a state of inflammation caused by pathogens with progressive bone destruction. In critical conditions, osteomyelitis can result in limb necrosis, dysfunction, and permanent disability. Traditional treatments for osteomyelitis usually include antibiotics and surgical debridement. However, overuse of antibiotics can result in bacterial resistance and serious side effects. In this paper, a microwave (MW)-responsive composite MoS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub>/BaTiO<sub>3</sub> was constructed from flaky nanoflower molybdenum disulfide (MoS<sub>2</sub>), rod-shaped bismuth sulfide (Bi<sub>2</sub>S<sub>3</sub>), and bulk barium titanate (BaTiO<sub>3</sub>) for the ‌therapy of bacteria-infected osteomyelitis. Under MW irradiation, MoS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub>/BaTiO<sub>3</sub> could generate MW heat and reactive oxygen species (ROS), and its MW thermal response mechanism was investigated by MW vector analysis, which showed that the MW thermal response performance of MoS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub>/BaTiO<sub>3</sub> was devoted to the reflection loss, dielectric loss, and suitable impedance matching and attenuation constants induced by the interfacial polarization, dipole polarization, and ferroelectrode polarization. Under MW irradiation, due to strong electromagnetic field enhancement parameters and low oxygen adsorption energy, MoS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub>/BaTiO<sub>3</sub> could form a heterogeneous interface to accelerate charge transfer, resulting in ROS. The antibacterial mechanism of MoS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub>/BaTiO<sub>3</sub> was investigated by bacterial transcriptome RNA sequencing analysis, which indicated that MoS<sub>2</sub>/Bi<sub>2</sub>S<sub>3</sub>/BaTiO<sub>3</sub> had excellent antibacterial properties.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"24 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.044","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteomyelitis is a state of inflammation caused by pathogens with progressive bone destruction. In critical conditions, osteomyelitis can result in limb necrosis, dysfunction, and permanent disability. Traditional treatments for osteomyelitis usually include antibiotics and surgical debridement. However, overuse of antibiotics can result in bacterial resistance and serious side effects. In this paper, a microwave (MW)-responsive composite MoS2/Bi2S3/BaTiO3 was constructed from flaky nanoflower molybdenum disulfide (MoS2), rod-shaped bismuth sulfide (Bi2S3), and bulk barium titanate (BaTiO3) for the ‌therapy of bacteria-infected osteomyelitis. Under MW irradiation, MoS2/Bi2S3/BaTiO3 could generate MW heat and reactive oxygen species (ROS), and its MW thermal response mechanism was investigated by MW vector analysis, which showed that the MW thermal response performance of MoS2/Bi2S3/BaTiO3 was devoted to the reflection loss, dielectric loss, and suitable impedance matching and attenuation constants induced by the interfacial polarization, dipole polarization, and ferroelectrode polarization. Under MW irradiation, due to strong electromagnetic field enhancement parameters and low oxygen adsorption energy, MoS2/Bi2S3/BaTiO3 could form a heterogeneous interface to accelerate charge transfer, resulting in ROS. The antibacterial mechanism of MoS2/Bi2S3/BaTiO3 was investigated by bacterial transcriptome RNA sequencing analysis, which indicated that MoS2/Bi2S3/BaTiO3 had excellent antibacterial properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Enhanced electrocatalytic reduction of nitrate to ammonia via anchoring CuNi alloy on oxygen vacancy-rich N-Ti3C2Tx Multivariant interfacial/ferroelectric/dipole polarization strengthened microwave-catalysis eradicates deep bacteria-infected osteomyelitis Microneedle for acne treatment: Recent advances in materials and technologies Giant charge trapping in 2D layered oxide nanosheets via intrinsic quantum wells A stable S-scheme heterojunction for sustainable photoelectrochemical cathodic protection of nickel-phosphorus-coated magnesium alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1