Giant charge trapping in 2D layered oxide nanosheets via intrinsic quantum wells

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-03-17 DOI:10.1016/j.jmst.2025.01.042
Kyungjune Cho, Haena Yim, Gahui Park, Jiwoo Yang, So-Yeon Yoo, Jongwoo Nam, Minwoo Song, Deok-Hwang Kwon, Keehoon Kang, Takhee Lee, Ji-Won Choi, Seungjun Chung
{"title":"Giant charge trapping in 2D layered oxide nanosheets via intrinsic quantum wells","authors":"Kyungjune Cho, Haena Yim, Gahui Park, Jiwoo Yang, So-Yeon Yoo, Jongwoo Nam, Minwoo Song, Deok-Hwang Kwon, Keehoon Kang, Takhee Lee, Ji-Won Choi, Seungjun Chung","doi":"10.1016/j.jmst.2025.01.042","DOIUrl":null,"url":null,"abstract":"The atomically thin nature of two-dimensional (2D) layered materials makes them susceptible to charge trapping by randomly created disorders, adversely affecting carrier dynamics such as charge transport and exciton lifetime. Typically, these disorders lead to poor device performance or require additional space to mitigate performance degradation. In this study, we investigate 2D layered Dion–Jacobson (DJ)-phase oxide perovskite nanosheets, which exhibit charge trapping within their well-defined quantum well (QW) structures, resulting in unique tailoring of electrical conductivity and photoconductivity. These DJ-phase perovskites, composed of tunable atomic constituents, demonstrate resonant tunneling and anomalous charge trapping due to their ultra-clean QWs. Remarkably, the conductivity of insulating HSr<sub>2</sub>Nb<sub>3</sub>O<sub>10</sub> (HSNO) increased over 1000 times upon applying voltage without additional treatments. We observed persistent photoconductivity in 2D vertical heterostructure devices, attributed to charge trapping in QWs, and demonstrated artificial synaptic behaviours in a single flake with tailored energy consumption. Varying the number of perovskite layers significantly allows the tunability of the energy bandgap. This study also highlights the high tunability of 2D perovskite nanosheets, promising various applications, including magnetic, high-k dielectric, and resistive switching devices. Our findings suggest a new class of ionic layered materials with great potential as novel two-dimensional building blocks for device applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"15 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.042","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The atomically thin nature of two-dimensional (2D) layered materials makes them susceptible to charge trapping by randomly created disorders, adversely affecting carrier dynamics such as charge transport and exciton lifetime. Typically, these disorders lead to poor device performance or require additional space to mitigate performance degradation. In this study, we investigate 2D layered Dion–Jacobson (DJ)-phase oxide perovskite nanosheets, which exhibit charge trapping within their well-defined quantum well (QW) structures, resulting in unique tailoring of electrical conductivity and photoconductivity. These DJ-phase perovskites, composed of tunable atomic constituents, demonstrate resonant tunneling and anomalous charge trapping due to their ultra-clean QWs. Remarkably, the conductivity of insulating HSr2Nb3O10 (HSNO) increased over 1000 times upon applying voltage without additional treatments. We observed persistent photoconductivity in 2D vertical heterostructure devices, attributed to charge trapping in QWs, and demonstrated artificial synaptic behaviours in a single flake with tailored energy consumption. Varying the number of perovskite layers significantly allows the tunability of the energy bandgap. This study also highlights the high tunability of 2D perovskite nanosheets, promising various applications, including magnetic, high-k dielectric, and resistive switching devices. Our findings suggest a new class of ionic layered materials with great potential as novel two-dimensional building blocks for device applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Enhanced electrocatalytic reduction of nitrate to ammonia via anchoring CuNi alloy on oxygen vacancy-rich N-Ti3C2Tx Multivariant interfacial/ferroelectric/dipole polarization strengthened microwave-catalysis eradicates deep bacteria-infected osteomyelitis Microneedle for acne treatment: Recent advances in materials and technologies Giant charge trapping in 2D layered oxide nanosheets via intrinsic quantum wells A stable S-scheme heterojunction for sustainable photoelectrochemical cathodic protection of nickel-phosphorus-coated magnesium alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1