Xiao Liu, Jiayu Shi, Yao Wu, Mingyu Ma, Yuqing Wang, Zhiwei Li, Xiangbin Cai, Yan Zhang, Ruihuan Duan, Song Liu, Weibo Gao, Zheng Liu
{"title":"Lateral Heterostructures of Defect-Patterned MoS2 for Efficient Hydrogen Production","authors":"Xiao Liu, Jiayu Shi, Yao Wu, Mingyu Ma, Yuqing Wang, Zhiwei Li, Xiangbin Cai, Yan Zhang, Ruihuan Duan, Song Liu, Weibo Gao, Zheng Liu","doi":"10.1002/smll.202411077","DOIUrl":null,"url":null,"abstract":"Defect engineering has demonstrated significant potential in optimizing the catalytic performance of molybdenum disulfide (MoS<sub>2</sub>) for hydrogen evolution reaction (HER). The simultaneous control of defect type, concentration, and spatial distribution within a single domain is crucial for accurate experimental detection and the establishment of structure-performance relationships, yet it remains challenging. Here, an efficient one-pot chemical vapor deposition (CVD) method is presented to synthesize monolayer defect-patterned MoS<sub>2</sub> with alternating domains of varying Mo vacancy (<i>V</i><sub>Mo</sub>) concentrations, along with trace tellurium (Te) doping at the edges, forming MoS<sub>2</sub>-MoS<sub>2x</sub>Te<sub>2(1−x)</sub> lateral heterostructures (LHS). A single defect patterned LHS-based on-chip electrochemical microcell, utilizing graphene as an intermediate contact, is employed to extract HER activity and achieve higher reaction kinetic than pristine MoS<sub>2</sub>. These findings demonstrate that the synergistic effect of <i>V</i><sub>Mo</sub> and Te doping effectively activates more unsaturated sulfur atoms, facilitating proton adsorption and accelerating the HER process. This work enriches the point defect engineering and provides valuable insights for the design and synthesis of 2D semiconductor catalysts.","PeriodicalId":228,"journal":{"name":"Small","volume":"104 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411077","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Defect engineering has demonstrated significant potential in optimizing the catalytic performance of molybdenum disulfide (MoS2) for hydrogen evolution reaction (HER). The simultaneous control of defect type, concentration, and spatial distribution within a single domain is crucial for accurate experimental detection and the establishment of structure-performance relationships, yet it remains challenging. Here, an efficient one-pot chemical vapor deposition (CVD) method is presented to synthesize monolayer defect-patterned MoS2 with alternating domains of varying Mo vacancy (VMo) concentrations, along with trace tellurium (Te) doping at the edges, forming MoS2-MoS2xTe2(1−x) lateral heterostructures (LHS). A single defect patterned LHS-based on-chip electrochemical microcell, utilizing graphene as an intermediate contact, is employed to extract HER activity and achieve higher reaction kinetic than pristine MoS2. These findings demonstrate that the synergistic effect of VMo and Te doping effectively activates more unsaturated sulfur atoms, facilitating proton adsorption and accelerating the HER process. This work enriches the point defect engineering and provides valuable insights for the design and synthesis of 2D semiconductor catalysts.
Alison P Galvani, Alyssa S Parpia, Abhishek Pandey, Pratha Sah, Kenneth Colón, Gerald Friedman, Travis Campbell, James G Kahn, Burton H Singer, Meagan C Fitzpatrick
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.