{"title":"Single-Phase Solid-Solution Reaction Facilitated Sodium-Ion Storage in Indium-Substituted Monoclinic Sodium-Iron Phosphomolybdate Cathodes","authors":"Sharad Dnyanu Pinjari, Purandas Mudavath, Ravi Chandra Dutta, Ispita Pal, Dipan Kundu, Saikumar Parshanaboina, Anand Kumar Singh, Ashok Kumar Nanjundan, Rohit Ranganathan Gaddam","doi":"10.1002/smll.202501004","DOIUrl":null,"url":null,"abstract":"Despite being a compelling alternative to the existing lithium-ion battery technology, the unavailability of cathodes with high energy density and capacity poses a key challenge toward the wider adaption of sodium-ion batteries (NIB). In this regard, iron-rich NASICONs have triggered significant attention owing to a greater abundance of Fe and higher operating voltages of Fe<sup>2+</sup>/Fe<sup>3+</sup> redox-couple. A major roadblock in such cathodes stems from the voltage hysteresis at higher current rates. Herein, a NASICON-type NaFe<sub>2-x</sub>In<sub>x</sub>(PO<sub>4</sub>)(MoO<sub>4</sub>)<sub>2</sub> (NFIPM) cathode is reported that shows a stable single-phase solid-solution reaction with significantly attenuated overpotential. Indium is strategically incorporated at the iron sites, expanding the lattice space to facilitate enhanced sodium-ion diffusion and also reducing the energy bandgap of NFIPM. <i>Magnetic susceptibility</i> (M-T) and <i>Electron Paramagnetic Resonance</i> (EPR) measurements reveal an increased spin state of iron following indium substitution. <i>First principle calculations</i> also confirm the lowering of the Na<sup>+</sup> migration energy barrier post indium doping. The optimized NFIPM10 shows a specific capacity of 111.85 mAh g<sup>−1</sup> at 0.1 C with remarkable cycling stability of up to 800 cycles at 2C. In situ X-ray diffraction confirms reversible structural stability of NFIPM during (de)sodiation, emphasizing the role of strategic doping in enhancing sodium-ion storage.","PeriodicalId":228,"journal":{"name":"Small","volume":"183 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501004","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite being a compelling alternative to the existing lithium-ion battery technology, the unavailability of cathodes with high energy density and capacity poses a key challenge toward the wider adaption of sodium-ion batteries (NIB). In this regard, iron-rich NASICONs have triggered significant attention owing to a greater abundance of Fe and higher operating voltages of Fe2+/Fe3+ redox-couple. A major roadblock in such cathodes stems from the voltage hysteresis at higher current rates. Herein, a NASICON-type NaFe2-xInx(PO4)(MoO4)2 (NFIPM) cathode is reported that shows a stable single-phase solid-solution reaction with significantly attenuated overpotential. Indium is strategically incorporated at the iron sites, expanding the lattice space to facilitate enhanced sodium-ion diffusion and also reducing the energy bandgap of NFIPM. Magnetic susceptibility (M-T) and Electron Paramagnetic Resonance (EPR) measurements reveal an increased spin state of iron following indium substitution. First principle calculations also confirm the lowering of the Na+ migration energy barrier post indium doping. The optimized NFIPM10 shows a specific capacity of 111.85 mAh g−1 at 0.1 C with remarkable cycling stability of up to 800 cycles at 2C. In situ X-ray diffraction confirms reversible structural stability of NFIPM during (de)sodiation, emphasizing the role of strategic doping in enhancing sodium-ion storage.
Alison P Galvani, Alyssa S Parpia, Abhishek Pandey, Pratha Sah, Kenneth Colón, Gerald Friedman, Travis Campbell, James G Kahn, Burton H Singer, Meagan C Fitzpatrick
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.