Cruciferae-based oral selenium delivery system reprograms antitumor response and enhances the anti-tumor potency of natural killer cells

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-03-17 DOI:10.1016/j.nantod.2025.102713
Shuoshan Li, Guizhen Li, Kexin Guo, Lin Zhou, Haimei Zhang, Haoqiang Lai, Tianfeng Chen
{"title":"Cruciferae-based oral selenium delivery system reprograms antitumor response and enhances the anti-tumor potency of natural killer cells","authors":"Shuoshan Li,&nbsp;Guizhen Li,&nbsp;Kexin Guo,&nbsp;Lin Zhou,&nbsp;Haimei Zhang,&nbsp;Haoqiang Lai,&nbsp;Tianfeng Chen","doi":"10.1016/j.nantod.2025.102713","DOIUrl":null,"url":null,"abstract":"<div><div>Natural killer (NK) cell-based immunotherapy represents a promising approach for lung cancer treatment, but its clinical efficacy is limited by poor <em>in vivo</em> persistence and cytotoxicity. Selenium, an essential trace element with immunomodulatory and antitumor properties, offers therapeutic potential, but its application is constrained by low bioavailability. In this study, Chinese Kale (<em>Brassica oleracea</em> var. <em>alboglabra</em>, <em>BOA</em>) was used to construct an oral kale seedlings biotransformation nano-selenium delivery system (Se@<em>BOA</em>). By inducing mitochondrial apoptosis in tumor cells, Se@<em>BOA</em> could effectively reprogram non-small-cell lung cancer immune resistance and enhance the killing abilities of NK cells on A549 cells <em>in vitro</em>, and additionally promote the activation of innate immune cells as well as adoptive NK cells to lyse tumors <em>in vivo</em>. Further mechanistic studies demonstrated that Se@<em>BOA</em> sensitizes tumor cells to NK cells by triggering DNA damage and p53 signaling pathways to induce NKG2DLs and death receptor expression. Additionally, Se@<em>BOA</em> could activate the AHR-STAT3 signaling cascade and promote NKG2D and NKp44 receptor expression on NK cells and thus inhibit tumor immune escape. Taken together, these findings reveal a novel strategy to improve selenium bioavailability and enhance the antitumor efficacy of allogenic human NK cell infusions, potentially informing the development of a plant-derived oral selenium delivery system to support NK cell therapy against lung cancer.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102713"},"PeriodicalIF":13.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000854","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural killer (NK) cell-based immunotherapy represents a promising approach for lung cancer treatment, but its clinical efficacy is limited by poor in vivo persistence and cytotoxicity. Selenium, an essential trace element with immunomodulatory and antitumor properties, offers therapeutic potential, but its application is constrained by low bioavailability. In this study, Chinese Kale (Brassica oleracea var. alboglabra, BOA) was used to construct an oral kale seedlings biotransformation nano-selenium delivery system (Se@BOA). By inducing mitochondrial apoptosis in tumor cells, Se@BOA could effectively reprogram non-small-cell lung cancer immune resistance and enhance the killing abilities of NK cells on A549 cells in vitro, and additionally promote the activation of innate immune cells as well as adoptive NK cells to lyse tumors in vivo. Further mechanistic studies demonstrated that Se@BOA sensitizes tumor cells to NK cells by triggering DNA damage and p53 signaling pathways to induce NKG2DLs and death receptor expression. Additionally, Se@BOA could activate the AHR-STAT3 signaling cascade and promote NKG2D and NKp44 receptor expression on NK cells and thus inhibit tumor immune escape. Taken together, these findings reveal a novel strategy to improve selenium bioavailability and enhance the antitumor efficacy of allogenic human NK cell infusions, potentially informing the development of a plant-derived oral selenium delivery system to support NK cell therapy against lung cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Correlation between particle size distribution and explosion intensity of aluminum powder
IF 3.5 3区 工程技术Journal of Loss Prevention in The Process IndustriesPub Date : 2022-12-01 DOI: 10.1016/j.jlp.2022.104896
Xiaofeng Ren , Jiangshi Zhang
Dimensionless correlation between conditions of electrolysis and particle size distribution
IF 1.8 4区 材料科学Materials Science and TechnologyPub Date : 1986-05-01 DOI: 10.1179/MST.1986.2.5.517
A. Aller, L. Debán
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Broad-spectrum utilization and direct energy transfer from lanthanide nanoparticles for sunlight-triggered low-dose, highly efficient photodynamic therapy J-Aggregated indocyanine green-loaded exosomes enable photoactivatable cytoplasmic delivery of STING agonist for targeted pancreatic cancer immunotherapy GSH-responsive nanoparticles enhance ovarian cancer chemo-immunotherapy via DNA damage repair pathway inhibition and cGAS-STING pathway activation Four-in-one pH/glucose-responsive engineered hydrogel for diabetes wound healing Scalable production and functionalization of TMD nanosheets for bioinspired, ultrastrong, repeatable fire warning nanopapers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1