Applying multiscale entropy for evaluating website visual complexity in an agile project: Using physiological data

IF 3.1 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Applied Ergonomics Pub Date : 2025-03-18 DOI:10.1016/j.apergo.2025.104509
Chih-Feng Cheng, Chiuhsiang Joe Lin, Ching-Yu Lin
{"title":"Applying multiscale entropy for evaluating website visual complexity in an agile project: Using physiological data","authors":"Chih-Feng Cheng,&nbsp;Chiuhsiang Joe Lin,&nbsp;Ching-Yu Lin","doi":"10.1016/j.apergo.2025.104509","DOIUrl":null,"url":null,"abstract":"<div><div>The perceived visual complexity of a website immediately and persistently impacts the user experience. However, existing visual complexity research methods in the literature are not suitable for agile website development, often associating visual complexity with website structure and requiring advanced programming skills and large participant samples. This study proposes an accessible, definition-independent method to evaluate website complexity using multiscale entropy analysis of physiological signals. Our results show that the multiscale entropy derived from physiological data can effectively differentiate websites with varying complexity levels, even with a small number of participants. This approach achieves robust and significant effects, enabling its simultaneous application with user experience assessment in the agile website development process. The proposed MSE-based method provides an objective, unified tool to evaluate visual complexity without the burden of defining and calculating visual complexity, allowing design teams to focus on the website itself during agile software development projects.</div></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"126 ","pages":"Article 104509"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687025000456","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The perceived visual complexity of a website immediately and persistently impacts the user experience. However, existing visual complexity research methods in the literature are not suitable for agile website development, often associating visual complexity with website structure and requiring advanced programming skills and large participant samples. This study proposes an accessible, definition-independent method to evaluate website complexity using multiscale entropy analysis of physiological signals. Our results show that the multiscale entropy derived from physiological data can effectively differentiate websites with varying complexity levels, even with a small number of participants. This approach achieves robust and significant effects, enabling its simultaneous application with user experience assessment in the agile website development process. The proposed MSE-based method provides an objective, unified tool to evaluate visual complexity without the burden of defining and calculating visual complexity, allowing design teams to focus on the website itself during agile software development projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ergonomics
Applied Ergonomics 工程技术-工程:工业
CiteScore
7.50
自引率
9.40%
发文量
248
审稿时长
53 days
期刊介绍: Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.
期刊最新文献
Human slip perception while walking on ice: Can we rely on self-reported slip counts for winter footwear evaluations? Applying multiscale entropy for evaluating website visual complexity in an agile project: Using physiological data Analysis of seat belt buckle release forces in post-rollover scenarios: Implications for passenger safety Augmented reality head-mounted display at–sea use causes cybersickness Kinematic effects of a back-assistance exoskeleton during human locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1