Dynamic trend fusion module for traffic flow prediction

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2025-03-16 DOI:10.1016/j.asoc.2025.112979
Jing Chen , Haocheng Ye , Zhian Ying , Yuntao Sun , Wenqiang Xu
{"title":"Dynamic trend fusion module for traffic flow prediction","authors":"Jing Chen ,&nbsp;Haocheng Ye ,&nbsp;Zhian Ying ,&nbsp;Yuntao Sun ,&nbsp;Wenqiang Xu","doi":"10.1016/j.asoc.2025.112979","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate traffic flow prediction is essential for applications like transport logistics but remains challenging due to complex spatio-temporal correlations and non-linear traffic patterns. Existing methods often model spatial and temporal dependencies separately, failing to effectively fuse them. To overcome this limitation, the <strong>D</strong>ynamic <strong>S</strong>patial-<strong>T</strong>emporal <strong>T</strong>rend Trans<strong>former</strong> (<strong>DST<sup>2</sup>former</strong>) is proposed to capture spatio-temporal correlations through adaptive embedding and to fuse dynamic and static information for learning multi-view dynamic features of traffic networks. The approach employs the <strong>D</strong>ynamic <strong>T</strong>rend <strong>R</strong>epresentation Trans<strong>former</strong> (<strong>DTRformer</strong>) to generate dynamic trends using encoders for both temporal and spatial dimensions, fused via Cross Spatial-Temporal Attention. Predefined graphs are compressed into a representation graph to extract static attributes and reduce redundancy. Experiments on four real-world traffic datasets demonstrate that our framework achieves state-of-the-art performance.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"174 ","pages":"Article 112979"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462500290X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate traffic flow prediction is essential for applications like transport logistics but remains challenging due to complex spatio-temporal correlations and non-linear traffic patterns. Existing methods often model spatial and temporal dependencies separately, failing to effectively fuse them. To overcome this limitation, the Dynamic Spatial-Temporal Trend Transformer (DST2former) is proposed to capture spatio-temporal correlations through adaptive embedding and to fuse dynamic and static information for learning multi-view dynamic features of traffic networks. The approach employs the Dynamic Trend Representation Transformer (DTRformer) to generate dynamic trends using encoders for both temporal and spatial dimensions, fused via Cross Spatial-Temporal Attention. Predefined graphs are compressed into a representation graph to extract static attributes and reduce redundancy. Experiments on four real-world traffic datasets demonstrate that our framework achieves state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
Developing a forecasting model for time series based on clustering and deep learning algorithms Dynamic trend fusion module for traffic flow prediction Attention-aware graph contrastive learning with topological relationship for recommendation Multimodal fine-grained reasoning for post quality evaluation Series clustering and dynamic periodic patching-based transformer for multivariate time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1