Multimodal fine-grained reasoning for post quality evaluation

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2025-03-16 DOI:10.1016/j.asoc.2025.112955
Xiaoxu Guo , Siyan Liang , Yachao Cui , Juxiang Zhou , Lei Wang , Han Cao
{"title":"Multimodal fine-grained reasoning for post quality evaluation","authors":"Xiaoxu Guo ,&nbsp;Siyan Liang ,&nbsp;Yachao Cui ,&nbsp;Juxiang Zhou ,&nbsp;Lei Wang ,&nbsp;Han Cao","doi":"10.1016/j.asoc.2025.112955","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate assessment of post quality frequently necessitates complex relational reasoning skills that emulate human cognitive processes, thereby requiring the modeling of nuanced relationships. However, existing research on post-quality assessment suffers from the following problems: (1) They are often categorization tasks that rely solely on unimodal data, which inadequately captures information in multimodal contexts and fails to differentiate the quality of students’ posts finely. (2) They ignore the noise in the multimodal deep fusion between posts and topics, which may produce misleading information for the model. (3) They do not adequately capture the complex and fine-grained relationships between post and topic, resulting in an inaccurate evaluation, such as relevance and comprehensiveness. Based on the above challenges, the Multimodal Fine-grained Topic-post Relational Reasoning(MFTRR) framework is proposed for modeling fine-grained cues by simulating the human thinking process. It consists of the local–global semantic correlation reasoning module and the multi-level evidential relational reasoning module. Specifically, MFTRR addresses the challenge of unimodal and categorization task limitations by framing post-quality assessment as a ranking task and integrating multimodal data to more effectively distinguish quality differences. To capture the most relevant semantic relationships, the Local–Global Semantic Correlation Reasoning Module enables deep interactions between posts and topics at both local and global scales. It is complemented by a topic-based maximum information fusion mechanism to filter out noise. Furthermore, to model complex and subtle relational reasoning, the Multi-Level Evidential Relational Reasoning Module analyzes topic-post relationships at both macro and micro levels by identifying critical cues and delving into granular relational cues. MFTRR is evaluated using three newly curated multimodal topic-post datasets, in addition to the publicly available Lazada-Home dataset. Experimental results indicate that MFTRR outperforms state-of-the-art baselines, achieving a 9.52% improvement in the NDCG@3 metric compared to the best text-only method on the Art History course dataset.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"174 ","pages":"Article 112955"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625002662","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate assessment of post quality frequently necessitates complex relational reasoning skills that emulate human cognitive processes, thereby requiring the modeling of nuanced relationships. However, existing research on post-quality assessment suffers from the following problems: (1) They are often categorization tasks that rely solely on unimodal data, which inadequately captures information in multimodal contexts and fails to differentiate the quality of students’ posts finely. (2) They ignore the noise in the multimodal deep fusion between posts and topics, which may produce misleading information for the model. (3) They do not adequately capture the complex and fine-grained relationships between post and topic, resulting in an inaccurate evaluation, such as relevance and comprehensiveness. Based on the above challenges, the Multimodal Fine-grained Topic-post Relational Reasoning(MFTRR) framework is proposed for modeling fine-grained cues by simulating the human thinking process. It consists of the local–global semantic correlation reasoning module and the multi-level evidential relational reasoning module. Specifically, MFTRR addresses the challenge of unimodal and categorization task limitations by framing post-quality assessment as a ranking task and integrating multimodal data to more effectively distinguish quality differences. To capture the most relevant semantic relationships, the Local–Global Semantic Correlation Reasoning Module enables deep interactions between posts and topics at both local and global scales. It is complemented by a topic-based maximum information fusion mechanism to filter out noise. Furthermore, to model complex and subtle relational reasoning, the Multi-Level Evidential Relational Reasoning Module analyzes topic-post relationships at both macro and micro levels by identifying critical cues and delving into granular relational cues. MFTRR is evaluated using three newly curated multimodal topic-post datasets, in addition to the publicly available Lazada-Home dataset. Experimental results indicate that MFTRR outperforms state-of-the-art baselines, achieving a 9.52% improvement in the NDCG@3 metric compared to the best text-only method on the Art History course dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
Developing a forecasting model for time series based on clustering and deep learning algorithms Dynamic trend fusion module for traffic flow prediction Attention-aware graph contrastive learning with topological relationship for recommendation Multimodal fine-grained reasoning for post quality evaluation Series clustering and dynamic periodic patching-based transformer for multivariate time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1