{"title":"Up-to-date nucleic acid assays for diagnosing respiratory infection","authors":"Kazuhiro Yatera , Chinatsu Nishida , Hiroshi Mukae","doi":"10.1016/j.resinv.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleic acid assays have been widely used as rapid tests for diagnosing respiratory infections during and after the coronavirus disease 2019 (COVID-19) pandemic. An ideal point-of-care diagnostic must be affordable, sensitive, specific, user-friendly, rapid/robust, equipment-free and deliverable (ASSURED), and in addition to improvements to conventional methods based on polymerase chain reaction (PCR), point-of-care testing aiming for “REASSURED” are emerging through integration with microfluidic technology. Compared to conventional immunoassays, nucleic acid assays, especially rapid nucleic acid assays as point-of-care testing, contribute to improvements in various clinical outcomes, such as diagnostic yield, turnaround time, length of hospital stay, disease treatment, and infection control management. Rapid and diverse development of new nucleic acid-based molecular diagnostic technologies, such as those based on the CRISPR/Cas system or biosensor nucleic acid assays, is expected to become increasingly diverse in the future as point-of-care testing. In addition, laboratory-based DNA sequencing technology has been used to perform microbiome analyses over a wide area and is expected to shed light on the pathological mechanisms of various respiratory infectious diseases. One example of the benefits of nucleic acid amplification analysis methods is their ability to reveal the true nature of the bacterial flora in pneumonia lesions. This has been demonstrated based on the results of 16S ribosomal RNA gene sequencing analyses using bronchoalveolar lavage fluid directly obtained from pneumonia lesions in patients with pneumonia.</div></div>","PeriodicalId":20934,"journal":{"name":"Respiratory investigation","volume":"63 3","pages":"Pages 383-393"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory investigation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212534525000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid assays have been widely used as rapid tests for diagnosing respiratory infections during and after the coronavirus disease 2019 (COVID-19) pandemic. An ideal point-of-care diagnostic must be affordable, sensitive, specific, user-friendly, rapid/robust, equipment-free and deliverable (ASSURED), and in addition to improvements to conventional methods based on polymerase chain reaction (PCR), point-of-care testing aiming for “REASSURED” are emerging through integration with microfluidic technology. Compared to conventional immunoassays, nucleic acid assays, especially rapid nucleic acid assays as point-of-care testing, contribute to improvements in various clinical outcomes, such as diagnostic yield, turnaround time, length of hospital stay, disease treatment, and infection control management. Rapid and diverse development of new nucleic acid-based molecular diagnostic technologies, such as those based on the CRISPR/Cas system or biosensor nucleic acid assays, is expected to become increasingly diverse in the future as point-of-care testing. In addition, laboratory-based DNA sequencing technology has been used to perform microbiome analyses over a wide area and is expected to shed light on the pathological mechanisms of various respiratory infectious diseases. One example of the benefits of nucleic acid amplification analysis methods is their ability to reveal the true nature of the bacterial flora in pneumonia lesions. This has been demonstrated based on the results of 16S ribosomal RNA gene sequencing analyses using bronchoalveolar lavage fluid directly obtained from pneumonia lesions in patients with pneumonia.