Cui Tianmeng , Xintao Ma , Dongmei Wang , Omalsad Hamood Odhah , Mohammed A. Alshahrani
{"title":"On the implications of a new statistical model and machine learning algorithms in music engineering","authors":"Cui Tianmeng , Xintao Ma , Dongmei Wang , Omalsad Hamood Odhah , Mohammed A. Alshahrani","doi":"10.1016/j.aej.2025.03.008","DOIUrl":null,"url":null,"abstract":"<div><div>The significance of probability distributions in representing practical occurrences cannot be overstated. In particular, the two-parameter Weibull distribution and the inverse Weibull (I-Weibull) distribution have proven to be highly effective in various engineering applications. This research focuses on the evolution and practical implications of a newly modified version of the I-Weibull distribution. The modification introduced is referred to as the sine cosine inverse Weibull (SCI-Weibull) distribution. We offer an in-depth examination of the mathematical characteristics of the SCI-Weibull distribution, with particular emphasis on its properties related to quartiles. The methodology for estimating the parameters, along with simulation studies for various combinations of parameter values, is also discussed. An illustrative case from the field of music engineering, showcasing the lifespan of headphones, has been selected to substantiate the superiority of the SCI-Weibull distribution. Moreover, the study examined two machine learning algorithms, k-Nearest Neighbors (KNN) and artificial neural network (ANN), for the purpose of predicting headphone lifespan. The results revealed that ANN was more adept at capturing noise present in musical data than KNN. This phenomenon can be regarded as a capacity of the ANN to comprehend the complex and non-linear relationships patterns within the musical data.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"122 ","pages":"Pages 496-507"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825002984","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The significance of probability distributions in representing practical occurrences cannot be overstated. In particular, the two-parameter Weibull distribution and the inverse Weibull (I-Weibull) distribution have proven to be highly effective in various engineering applications. This research focuses on the evolution and practical implications of a newly modified version of the I-Weibull distribution. The modification introduced is referred to as the sine cosine inverse Weibull (SCI-Weibull) distribution. We offer an in-depth examination of the mathematical characteristics of the SCI-Weibull distribution, with particular emphasis on its properties related to quartiles. The methodology for estimating the parameters, along with simulation studies for various combinations of parameter values, is also discussed. An illustrative case from the field of music engineering, showcasing the lifespan of headphones, has been selected to substantiate the superiority of the SCI-Weibull distribution. Moreover, the study examined two machine learning algorithms, k-Nearest Neighbors (KNN) and artificial neural network (ANN), for the purpose of predicting headphone lifespan. The results revealed that ANN was more adept at capturing noise present in musical data than KNN. This phenomenon can be regarded as a capacity of the ANN to comprehend the complex and non-linear relationships patterns within the musical data.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering