Xinyu Dong , Yanmei Ye , Dan Su , Shengao Yi , Runjia Yang , Dagmar Haase , Angela Lausch
{"title":"Adaptive ranking of specific tree species for targeted green infrastructure intervention in response to urban hazards","authors":"Xinyu Dong , Yanmei Ye , Dan Su , Shengao Yi , Runjia Yang , Dagmar Haase , Angela Lausch","doi":"10.1016/j.ufug.2025.128776","DOIUrl":null,"url":null,"abstract":"<div><div>Green infrastructure (GI), with its multifarious benefits, can effectively address urban hazards and enhance urban resilience and sustainability. While traditional GI planning studies incorporate its multifunctionality, they are often limited to identifying prioritized locations for GI intervention without exploring how to respond to the local specific demands. In this study, using a highly urbanized city, Zhengzhou as a case, we first spatially identified urban hazards in three aspects, including urban flood susceptibility, urban heat environment, and air pollution, utilizing machine learning, remote sensing retrieval. Subsequently, we employed the i-Tree Eco model to quantify the effectiveness of potential tree species in unitary functional units in addressing these urban hazards. An adaptive ranking approach was then proposed to match the effectiveness of tree species with local demands for addressing urban hazards. Our results indicate that the inner city area, as well as the northwest should be prioritized for GI interventions. Urban hazards exhibit significant spatial heterogeneity and different tree species also have specific advantages, highlighting the importance of adaptive decision-making. The study area is divided into three zones, and we suggest targeting urban hazards with the most effective GI intervention and maximizing carbon sequestration potential in areas without pronounced urban hazards. The developed framework can serve as guidance for scientific decision-making in urban greening projects.</div></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":"107 ","pages":"Article 128776"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866725001104","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Green infrastructure (GI), with its multifarious benefits, can effectively address urban hazards and enhance urban resilience and sustainability. While traditional GI planning studies incorporate its multifunctionality, they are often limited to identifying prioritized locations for GI intervention without exploring how to respond to the local specific demands. In this study, using a highly urbanized city, Zhengzhou as a case, we first spatially identified urban hazards in three aspects, including urban flood susceptibility, urban heat environment, and air pollution, utilizing machine learning, remote sensing retrieval. Subsequently, we employed the i-Tree Eco model to quantify the effectiveness of potential tree species in unitary functional units in addressing these urban hazards. An adaptive ranking approach was then proposed to match the effectiveness of tree species with local demands for addressing urban hazards. Our results indicate that the inner city area, as well as the northwest should be prioritized for GI interventions. Urban hazards exhibit significant spatial heterogeneity and different tree species also have specific advantages, highlighting the importance of adaptive decision-making. The study area is divided into three zones, and we suggest targeting urban hazards with the most effective GI intervention and maximizing carbon sequestration potential in areas without pronounced urban hazards. The developed framework can serve as guidance for scientific decision-making in urban greening projects.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.