Numerical simulation analysis of dust deposition characteristics and effects on parabolic trough solar collector

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-03-19 DOI:10.1016/j.jweia.2025.106086
Kai Zhang , Jianjin Tian , Benli Liu , Hailong Zhang , Zhenghui Wang , Tao Wang
{"title":"Numerical simulation analysis of dust deposition characteristics and effects on parabolic trough solar collector","authors":"Kai Zhang ,&nbsp;Jianjin Tian ,&nbsp;Benli Liu ,&nbsp;Hailong Zhang ,&nbsp;Zhenghui Wang ,&nbsp;Tao Wang","doi":"10.1016/j.jweia.2025.106086","DOIUrl":null,"url":null,"abstract":"<div><div>Desert regions are abundant in solar radiation, making them excellent locations for constructing parabolic trough solar thermal power plants. Nevertheless, the characteristic windy and dusty conditions of these areas pose significant risks to the structural stability and operational efficiency of parabolic trough solar collectors. In this study, airflow dynamics and dust deposition around parabolic trough solar collectors are analyzed through three-dimensional numerical simulations. The study shows that when the inclination angle is 90° or less, the dust deposition rate peaks at 3.83 % at a 45° angle, averaging an increase of 6.06 % for dust particles sized between 1 and 50 μm. In contrast, when the inclination exceeds 90°, the deposition rate curve becomes much flatter, with an average increase of only 0.93 %. Furthermore, the dust deposition rate on the collector's surface diminishes as wind speed increases, yet it escalates with increases in both wind angle and particle size. Correlation analysis indicates that the most significant factors influencing dust deposition, in descending order of impact, are particle size, wind angle, inclination angle, and wind speed, with correlation coefficients of 0.79, −0.16, 0.14 and −0.049, respectively. This study offers substantial support for the structural design and dust control measures in desert environments.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"261 ","pages":"Article 106086"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Desert regions are abundant in solar radiation, making them excellent locations for constructing parabolic trough solar thermal power plants. Nevertheless, the characteristic windy and dusty conditions of these areas pose significant risks to the structural stability and operational efficiency of parabolic trough solar collectors. In this study, airflow dynamics and dust deposition around parabolic trough solar collectors are analyzed through three-dimensional numerical simulations. The study shows that when the inclination angle is 90° or less, the dust deposition rate peaks at 3.83 % at a 45° angle, averaging an increase of 6.06 % for dust particles sized between 1 and 50 μm. In contrast, when the inclination exceeds 90°, the deposition rate curve becomes much flatter, with an average increase of only 0.93 %. Furthermore, the dust deposition rate on the collector's surface diminishes as wind speed increases, yet it escalates with increases in both wind angle and particle size. Correlation analysis indicates that the most significant factors influencing dust deposition, in descending order of impact, are particle size, wind angle, inclination angle, and wind speed, with correlation coefficients of 0.79, −0.16, 0.14 and −0.049, respectively. This study offers substantial support for the structural design and dust control measures in desert environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Soil to earthworm bioaccumulation of polyhalogenated carbazoles and related compounds: Lab and field tests
IF 8.9 2区 环境科学与生态学Environmental PollutionPub Date : 2023-01-01 DOI: 10.1016/j.envpol.2022.120475
Qi Su , Chaojie Li , Minfeng Dong , Xincheng Liu , Dan Zhong , Shanshan Zhou
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
期刊最新文献
Numerical simulation analysis of dust deposition characteristics and effects on parabolic trough solar collector Practical flutter speed formulas for flexible structures considering all torsional-to-vertical frequency ratios Model-predictive-control method with disturbance estimation by equivalent-input-disturbance approach for wind-induced vibration Control of unexpected wind-induced vibration of an in-service cable-stayed bridge using vortex generators Experimental study on a novel wind gust generator based on an adaptive nozzle design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1