Convolutional neural network for automated quantitative analysis of non-destructively acquired three-dimensional corrosion pit morphology data

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2025-03-19 DOI:10.1016/j.scriptamat.2025.116660
Kasturi Narasimha Sasidhar, Rohan Ahuja, Carson Lukas, Kumar Sridharan
{"title":"Convolutional neural network for automated quantitative analysis of non-destructively acquired three-dimensional corrosion pit morphology data","authors":"Kasturi Narasimha Sasidhar,&nbsp;Rohan Ahuja,&nbsp;Carson Lukas,&nbsp;Kumar Sridharan","doi":"10.1016/j.scriptamat.2025.116660","DOIUrl":null,"url":null,"abstract":"<div><div>We have trained an autoencoder-decoder type convolutional neural network for automated quantitative analysis of three-dimensional corrosion-pit morphology data. We have used pit morphology data, acquired non-destructively using scanning white light interferometry from AISI 304 stainless steel specimens subjected to different surface modification treatments, followed by potentiodynamic polarization corrosion testing. The autoencoder was designed to compress the high-dimensional input pit morphology data into a latent space of two variables, from which the decoder produces reconstructions of the input data. Analysis of the compressed data in the latent space led to the identification of a unique vector which encompassed most of the data points. Application of the model to artificially constructed semi-ellipsoidal pits with independently quantifiable morphological characteristics showed that the vector was analogous to ‘effective sharpness’ of pits, helping define a ‘sharpness/bluntness’ metric for arbitrarily shaped corrosion pits, that can be linked to their propensity to transition into stress corrosion cracks.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"262 ","pages":"Article 116660"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964622500123X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We have trained an autoencoder-decoder type convolutional neural network for automated quantitative analysis of three-dimensional corrosion-pit morphology data. We have used pit morphology data, acquired non-destructively using scanning white light interferometry from AISI 304 stainless steel specimens subjected to different surface modification treatments, followed by potentiodynamic polarization corrosion testing. The autoencoder was designed to compress the high-dimensional input pit morphology data into a latent space of two variables, from which the decoder produces reconstructions of the input data. Analysis of the compressed data in the latent space led to the identification of a unique vector which encompassed most of the data points. Application of the model to artificially constructed semi-ellipsoidal pits with independently quantifiable morphological characteristics showed that the vector was analogous to ‘effective sharpness’ of pits, helping define a ‘sharpness/bluntness’ metric for arbitrarily shaped corrosion pits, that can be linked to their propensity to transition into stress corrosion cracks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Polar Hopf rings emerge in antiferroelectrics First-principles investigation of alloying effects on stacking fault energies and lattice constants of γ′′-Ni3Nb: A comprehensive study Convolutional neural network for automated quantitative analysis of non-destructively acquired three-dimensional corrosion pit morphology data Size effects of topological vortex domain in BiFeO3 nanoisland by phase-field simulations Improving deformability of brittle intermetallics via introducing mobile dislocations across coherent interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1