Zhenkang Fu , Qinghua Zhu , Bingxiang Liu , Chungen Yan
{"title":"Patent lifespan prediction and interpreting the key determinants: An application of interpretable machine learning survival analysis approach","authors":"Zhenkang Fu , Qinghua Zhu , Bingxiang Liu , Chungen Yan","doi":"10.1016/j.techfore.2025.124104","DOIUrl":null,"url":null,"abstract":"<div><div>While the lifespan of patents is widely regarded as a key indicator for assessing their economic value, its utility in patent valuation is significantly constrained, as it can only be accurately measured at the time of patent expiration. Addressing this limitation necessitates proactively predicting the expected patent lifespan and thoroughly analyzing the complex relationships among various factors that affect patent lifespan. In response, this study constructs an interpretable machine learning framework to predict patent lifespan and explores the factors influencing it. The framework integrates features from five dimensions: technical, legal, market, patentee, and textual. It develops five distinct machine learning survival analysis models and employs post-hoc interpretable machine learning techniques on the optimal model to investigate the intricate relationships between these features and patent lifespan. The results of an empirical study of patents in China's Yangtze River Delta region demonstrate that the machine learning survival analysis approach significantly outperforms the traditional Cox proportional hazards model (Cox-PH) in terms of predictive performance. Furthermore, the post-hoc interpretation technique provides precise descriptions of the effects of various features on patent lifespan, revealing previously unidentified nonlinear relationships. This study holds substantial significance for the research and application of patent valuation, early patent warning, patent pledge financing, and patent management.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"215 ","pages":"Article 124104"},"PeriodicalIF":12.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525001350","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
While the lifespan of patents is widely regarded as a key indicator for assessing their economic value, its utility in patent valuation is significantly constrained, as it can only be accurately measured at the time of patent expiration. Addressing this limitation necessitates proactively predicting the expected patent lifespan and thoroughly analyzing the complex relationships among various factors that affect patent lifespan. In response, this study constructs an interpretable machine learning framework to predict patent lifespan and explores the factors influencing it. The framework integrates features from five dimensions: technical, legal, market, patentee, and textual. It develops five distinct machine learning survival analysis models and employs post-hoc interpretable machine learning techniques on the optimal model to investigate the intricate relationships between these features and patent lifespan. The results of an empirical study of patents in China's Yangtze River Delta region demonstrate that the machine learning survival analysis approach significantly outperforms the traditional Cox proportional hazards model (Cox-PH) in terms of predictive performance. Furthermore, the post-hoc interpretation technique provides precise descriptions of the effects of various features on patent lifespan, revealing previously unidentified nonlinear relationships. This study holds substantial significance for the research and application of patent valuation, early patent warning, patent pledge financing, and patent management.
期刊介绍:
Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors.
In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.