Wavefront Reconstruction for a Holographic Modal Wavefront Sensor Based on Extreme Learning Machine

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2025-02-17 DOI:10.1109/JPHOT.2025.3542831
Han Cao;Kainan Yao;Jianli Wang;Minglu Li;Leqiang Yang;Zhiqiang Xu
{"title":"Wavefront Reconstruction for a Holographic Modal Wavefront Sensor Based on Extreme Learning Machine","authors":"Han Cao;Kainan Yao;Jianli Wang;Minglu Li;Leqiang Yang;Zhiqiang Xu","doi":"10.1109/JPHOT.2025.3542831","DOIUrl":null,"url":null,"abstract":"The intermodal crosstalk effect as well as the limited dynamic range of holographic modal wavefront sensors (HMWFSs) significantly affect their wavefront-sensing accuracy. Thus, this study was aimed at proposing an extreme learning machine (ELM)-based wavefront-reconstruction algorithm for holographic HMWFSs to overcome the errors caused by crosstalk as well as extend the dynamic range of the sensors. The simulation results indicated that the proposed ELM-based algorithm reduced the crosstalk-induced residual wavefront root mean square error to 4.7% of the initial value, and this was 84.6% lower than the reduction achieved by the conventional sensitivity-matrix method. After selecting the optimal range of training samples, the ELM model further reduced the residual error by approximately 74% under aberration conditions, where the conventional method reached its convergence limit. Thus, we proposed an ELM model for mitigating the issue of the linear regression relationship between the differential signals measured by HMWFS and the incident-wavefront Zernike-mode coefficients under the aberration-mode crosstalk effect.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 2","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891414","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891414/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The intermodal crosstalk effect as well as the limited dynamic range of holographic modal wavefront sensors (HMWFSs) significantly affect their wavefront-sensing accuracy. Thus, this study was aimed at proposing an extreme learning machine (ELM)-based wavefront-reconstruction algorithm for holographic HMWFSs to overcome the errors caused by crosstalk as well as extend the dynamic range of the sensors. The simulation results indicated that the proposed ELM-based algorithm reduced the crosstalk-induced residual wavefront root mean square error to 4.7% of the initial value, and this was 84.6% lower than the reduction achieved by the conventional sensitivity-matrix method. After selecting the optimal range of training samples, the ELM model further reduced the residual error by approximately 74% under aberration conditions, where the conventional method reached its convergence limit. Thus, we proposed an ELM model for mitigating the issue of the linear regression relationship between the differential signals measured by HMWFS and the incident-wavefront Zernike-mode coefficients under the aberration-mode crosstalk effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极限学习机的全息模态波前传感器波前重构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Emergency medicine crisis resource management (EMCRM): pilot study of a simulation-based crisis management course for emergency medicine.
IF 4.4 3区 医学Academic Emergency MedicinePub Date : 2003-04-01 DOI: 10.1111/j.1553-2712.2003.tb01354.x
Martin Reznek, Rebecca Smith-Coggins, Steven Howard, Kanthi Kiran, Phillip Harter, Yasser Sowb, David Gaba, Thomas Krummel
Crisis Resources for Emergency Workers (CREW II): results of a pilot study and simulation-based crisis resource management course for emergency medicine residents.
IF 2.4 4区 医学Canadian Journal of Emergency MedicinePub Date : 2012-11-01 DOI: 10.2310/8000.2012.120580
Christopher M Hicks, Alex Kiss, Glen W Bandiera, Christopher J Denny
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
Estimation of an Abnormal Noise Location Over Multi-Span Optical Fiber Link Based on Nonlinear Fourier Transform Generation of Random Microwave Pulse Based on Random Optoelectronic Oscillator Wavefront Reconstruction for a Holographic Modal Wavefront Sensor Based on Extreme Learning Machine All-Fiber Broadband Photon Pair Generation in Dispersion Flattened Highly Non-Linear Fibers Influence of the Passivation Method on the Performance of 635 nm Ridge Waveguide Lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1