Microclimate determines the diversity patterns, biomass, and water storage capacity of bryophytes in the alpine ecosystem: a case study in Kashmir Himalaya

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2025-03-19 DOI:10.1007/s10661-025-13844-7
Ramya Ranjan Paul, Soumit Kumar Behera, Krishna Kumar Rawat, Sonik Anto, Vinay Sahu, C. P. Singh, Anzar Ahmad Khuroo
{"title":"Microclimate determines the diversity patterns, biomass, and water storage capacity of bryophytes in the alpine ecosystem: a case study in Kashmir Himalaya","authors":"Ramya Ranjan Paul,&nbsp;Soumit Kumar Behera,&nbsp;Krishna Kumar Rawat,&nbsp;Sonik Anto,&nbsp;Vinay Sahu,&nbsp;C. P. Singh,&nbsp;Anzar Ahmad Khuroo","doi":"10.1007/s10661-025-13844-7","DOIUrl":null,"url":null,"abstract":"<div><p>The majority of studies on alpine vegetation have focused on higher plants, while relatively little is known about how lower plants, such as bryophytes, respond to microclimate in the alpine ecosystem. Microclimate critically influences the distribution and growth of bryophytes in alpine ecosystems, and therefore, understanding the functional role of microclimate on bryophyte’s physiological adaptation is critical for understanding the climate change response. To fill this knowledge gap, the present study investigated the patterns of species richness, biomass accumulation, and water storage capacity in bryophytes in alpine ecosystems of the Kashmir Himalaya. We conducted stratified systematic field sampling of bryophytes in two major alpine vegetation zones: open meadow above the timberline (AT) and under forest canopy cover below the timberline (BT) in Kashmir Himalaya, along with measurement of five microclimate variables: photosynthetically active radiation (PAR, µmol m<sup>−2</sup> s<sup>−1</sup>), air temperature (AT, °C), soil temperature (ST, °C), ambient CO<sub>2</sub> concentration (μmol mol<sup>−1</sup>), and absolute humidity (AH, mmol mol<sup>−1</sup>). We found a total of 30 bryophyte species, including 3 liverworts and 27 mosses in the two zones with 10 species common. AT zone with greater species richness and more homogenous distribution of bryophytes exhibited higher biomass. Canonical correspondence analysis (CCA) identified PAR and air temperature (AT) as key microclimatic drivers influencing community structure, biomass accumulation, and water storage capacity in above the timberline, while humidity (AH) emerged as the primary factor shaping bryophyte dynamics in below the timberline. This study provides an insight into the ecological dynamics of bryophyte communities and relationships among microclimates with community structure, biomass, and water storage capacity of bryophytes in alpine ecosystems and highlights the need for continuous long-term monitoring to unravel these complex interactions.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13844-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of studies on alpine vegetation have focused on higher plants, while relatively little is known about how lower plants, such as bryophytes, respond to microclimate in the alpine ecosystem. Microclimate critically influences the distribution and growth of bryophytes in alpine ecosystems, and therefore, understanding the functional role of microclimate on bryophyte’s physiological adaptation is critical for understanding the climate change response. To fill this knowledge gap, the present study investigated the patterns of species richness, biomass accumulation, and water storage capacity in bryophytes in alpine ecosystems of the Kashmir Himalaya. We conducted stratified systematic field sampling of bryophytes in two major alpine vegetation zones: open meadow above the timberline (AT) and under forest canopy cover below the timberline (BT) in Kashmir Himalaya, along with measurement of five microclimate variables: photosynthetically active radiation (PAR, µmol m−2 s−1), air temperature (AT, °C), soil temperature (ST, °C), ambient CO2 concentration (μmol mol−1), and absolute humidity (AH, mmol mol−1). We found a total of 30 bryophyte species, including 3 liverworts and 27 mosses in the two zones with 10 species common. AT zone with greater species richness and more homogenous distribution of bryophytes exhibited higher biomass. Canonical correspondence analysis (CCA) identified PAR and air temperature (AT) as key microclimatic drivers influencing community structure, biomass accumulation, and water storage capacity in above the timberline, while humidity (AH) emerged as the primary factor shaping bryophyte dynamics in below the timberline. This study provides an insight into the ecological dynamics of bryophyte communities and relationships among microclimates with community structure, biomass, and water storage capacity of bryophytes in alpine ecosystems and highlights the need for continuous long-term monitoring to unravel these complex interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Microclimate determines the diversity patterns, biomass, and water storage capacity of bryophytes in the alpine ecosystem: a case study in Kashmir Himalaya Concurrent measurements of indoor and outdoor airborne bacteria in university classrooms at a tropical megacity: concentration and bacterial composition Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters Menstrual wastes: a Sri Lankan perspective on quantities, characteristics, and issues How monitoring crops and drought, combined with climate projections, enhances food security: Insights from the Northwestern regions of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1