Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2025-03-19 DOI:10.1007/s10661-025-13883-0
Marco Antonio Alvarez Amparán, Adriana Palacios, German Miranda Flores, Pedro Manuel Castro Olivera
{"title":"Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters","authors":"Marco Antonio Alvarez Amparán,&nbsp;Adriana Palacios,&nbsp;German Miranda Flores,&nbsp;Pedro Manuel Castro Olivera","doi":"10.1007/s10661-025-13883-0","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) have become a major global environmental problem due to their accelerated distribution throughout different environments. Their widespread presence is a potential threat to the ecosystems because they alter the natural interaction among their constituent elements. MPs are considered as emergent pollutants due to the huge amount existing in the environment and by the toxic effects they can cause in living beings. The removal of MPs from water bodies and wastewaters is a control strategy that needs to be implemented from the present on and strictly constantly in the near future to control and mitigate their distribution into other environments. The present work shows a detailed comparison of the current potential technologies for the remediation of the MPs pollution. That is, physical, biological, and chemical methods for the removal of MPs from water bodies and wastewaters. Focusing mainly on the discussion of the perspective on the current innovative technologies for the removal or degradation of the MPs, rather than in a deep technical discussion of the methodologies. The selected novel physical methods discussed are adsorption, ultrafiltration, dynamic membranes and flotation. The physical methods are used to modify the physical properties of the MPs particles to facilitate their removal. The biological methods for the removal of MPs are based on the use of different bacterial strains, worms, mollusks or fungus to degrade MPs particles due to the hydrocarbon chain decrease of the particles, because these kinds of microorganisms feed on these organic chains. The degradation of MPs in water bodies and wastewaters by chemical methods is focusing on coagulation, electrocoagulation, photocatalysis, and ozonation. Chemical methods achieve the degradation of MPs by the modification of the chemical structure of the particles either by the change of the surface of the particles or by attacking radicals with a high oxidation capacity. Additionally, some interesting combinations of physical, chemical, and biological methods are discussed. Finally, this work includes a critical discussion and comparison of several novel methods for the removal or degradation of MPs from water bodies and wastewaters, emphasizing the areas of opportunity and challenges to be faced.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10661-025-13883-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13883-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) have become a major global environmental problem due to their accelerated distribution throughout different environments. Their widespread presence is a potential threat to the ecosystems because they alter the natural interaction among their constituent elements. MPs are considered as emergent pollutants due to the huge amount existing in the environment and by the toxic effects they can cause in living beings. The removal of MPs from water bodies and wastewaters is a control strategy that needs to be implemented from the present on and strictly constantly in the near future to control and mitigate their distribution into other environments. The present work shows a detailed comparison of the current potential technologies for the remediation of the MPs pollution. That is, physical, biological, and chemical methods for the removal of MPs from water bodies and wastewaters. Focusing mainly on the discussion of the perspective on the current innovative technologies for the removal or degradation of the MPs, rather than in a deep technical discussion of the methodologies. The selected novel physical methods discussed are adsorption, ultrafiltration, dynamic membranes and flotation. The physical methods are used to modify the physical properties of the MPs particles to facilitate their removal. The biological methods for the removal of MPs are based on the use of different bacterial strains, worms, mollusks or fungus to degrade MPs particles due to the hydrocarbon chain decrease of the particles, because these kinds of microorganisms feed on these organic chains. The degradation of MPs in water bodies and wastewaters by chemical methods is focusing on coagulation, electrocoagulation, photocatalysis, and ozonation. Chemical methods achieve the degradation of MPs by the modification of the chemical structure of the particles either by the change of the surface of the particles or by attacking radicals with a high oxidation capacity. Additionally, some interesting combinations of physical, chemical, and biological methods are discussed. Finally, this work includes a critical discussion and comparison of several novel methods for the removal or degradation of MPs from water bodies and wastewaters, emphasizing the areas of opportunity and challenges to be faced.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Microclimate determines the diversity patterns, biomass, and water storage capacity of bryophytes in the alpine ecosystem: a case study in Kashmir Himalaya Concurrent measurements of indoor and outdoor airborne bacteria in university classrooms at a tropical megacity: concentration and bacterial composition Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters Menstrual wastes: a Sri Lankan perspective on quantities, characteristics, and issues How monitoring crops and drought, combined with climate projections, enhances food security: Insights from the Northwestern regions of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1