Lin Li, Lanlan Liu, Jianmei Zhou, Chen Gu, Xiongzhi Wu, Chenghong Lei, Liqiang Yan
{"title":"Cadmium telluride quantum dot-MXene composite–based electrochemical sensing platform for simultaneous determination of rutin and quercetin in foods","authors":"Lin Li, Lanlan Liu, Jianmei Zhou, Chen Gu, Xiongzhi Wu, Chenghong Lei, Liqiang Yan","doi":"10.1007/s00604-025-07092-2","DOIUrl":null,"url":null,"abstract":"<div><p> A simple and rapid electrochemical method based on a composite of cadmium telluride quantum dots (CdTe QDs) and MXene is developed for the simultaneous determination of rutin and quercetin in food samples. The CdTe QD-MXene composite is synthesized via the in situ growth of CdTe QDs on MXene, which serves as a carrier and enhances electrical conductivity. Incorporating CdTe QDs into MXene interlayers effectively prevents agglomeration in MXene and provides more active sites for electrochemical determination. The developed electrochemical method can successfully determine rutin and quercetin, both individually and simultaneously, in aqueous solutions while achieving high stability and selectivity. Notably, the prepared sensor exhibits limits of detection of 3.300 × 10<sup>−8</sup> and 3.268 × 10<sup>−7</sup> M for the simultaneous determination of rutin and quercetin, respectively. Moreover, the sensing platform is used for the determination of rutin in buckwheat, locust rice, and apples, with results well comparable to those obtained using ultraviolet spectroscopy. Finally, the proposed sensor is employed to monitor the hydrolysis of rutin into quercetin in buckwheat using an electrochemical method for the first time. This study provides new ideas for the application of electrochemical sensors in food and drug science.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07092-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A simple and rapid electrochemical method based on a composite of cadmium telluride quantum dots (CdTe QDs) and MXene is developed for the simultaneous determination of rutin and quercetin in food samples. The CdTe QD-MXene composite is synthesized via the in situ growth of CdTe QDs on MXene, which serves as a carrier and enhances electrical conductivity. Incorporating CdTe QDs into MXene interlayers effectively prevents agglomeration in MXene and provides more active sites for electrochemical determination. The developed electrochemical method can successfully determine rutin and quercetin, both individually and simultaneously, in aqueous solutions while achieving high stability and selectivity. Notably, the prepared sensor exhibits limits of detection of 3.300 × 10−8 and 3.268 × 10−7 M for the simultaneous determination of rutin and quercetin, respectively. Moreover, the sensing platform is used for the determination of rutin in buckwheat, locust rice, and apples, with results well comparable to those obtained using ultraviolet spectroscopy. Finally, the proposed sensor is employed to monitor the hydrolysis of rutin into quercetin in buckwheat using an electrochemical method for the first time. This study provides new ideas for the application of electrochemical sensors in food and drug science.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.