Symbiont-Mediated Metabolic Shift in the Sea Anemone Anthopleura elegantissima.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2025-03-17 DOI:10.1111/mec.17722
Tyler J Carrier, Holland Elder, Jason Macrander, James L Dimond, Brian L Bingham, Adam M Reitzel
{"title":"Symbiont-Mediated Metabolic Shift in the Sea Anemone Anthopleura elegantissima.","authors":"Tyler J Carrier, Holland Elder, Jason Macrander, James L Dimond, Brian L Bingham, Adam M Reitzel","doi":"10.1111/mec.17722","DOIUrl":null,"url":null,"abstract":"<p><p>Coral reefs and their photosynthetic algae form one of the most ecologically and economically impactful symbioses in the animal kingdom. The stability of this nutritional mutualism and this ecosystem is, however, at risk due to increasing sea surface temperatures that cause corals to expel their symbionts. Symbioses with these microeukaryotes have independently evolved multiple times, and non-coral cnidarians (e.g., sea anemones) serve as a valuable and insightful comparative system due to their ease of husbandry in the laboratory and their ability to shuffle different strains of their photosymbionts to acclimate to thermal conditions. This breadth of symbiont shuffling is exemplified by the sea anemone Anthopleura elegantissima, which naturally occurs in symbiosis with the dinoflagellate Breviolum muscatinei (formerly Symbiodinium) or the chlorophyte Elliptochloris marina as well as being aposymbiotic. Here, we assembled a draft genome and used multi-omics to characterise multiple physiological levels of each phenotype. We find that A. elegantissima has symbiont-specific transcriptional and metabolomic signatures, but a similar bacterial community dominated by a single Sphingomonas species that is commonly found in the cnidarian microbiome. Symbiosis with either eukaryotic symbiont resulted in differential gene expression and metabolic abundance for diverse processes spanning metabolism and immunity to reproduction and development, with some of these processes being unique to either symbiont. The ability to culture A. elegantissima with its phylogenetically divergent photosymbionts and perform experimental manipulations makes A. elegantissima another tractable sea anemone system to decode the symbiotic conversations of coral reef ecosystems and aid in wider conservation efforts.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17722"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17722","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coral reefs and their photosynthetic algae form one of the most ecologically and economically impactful symbioses in the animal kingdom. The stability of this nutritional mutualism and this ecosystem is, however, at risk due to increasing sea surface temperatures that cause corals to expel their symbionts. Symbioses with these microeukaryotes have independently evolved multiple times, and non-coral cnidarians (e.g., sea anemones) serve as a valuable and insightful comparative system due to their ease of husbandry in the laboratory and their ability to shuffle different strains of their photosymbionts to acclimate to thermal conditions. This breadth of symbiont shuffling is exemplified by the sea anemone Anthopleura elegantissima, which naturally occurs in symbiosis with the dinoflagellate Breviolum muscatinei (formerly Symbiodinium) or the chlorophyte Elliptochloris marina as well as being aposymbiotic. Here, we assembled a draft genome and used multi-omics to characterise multiple physiological levels of each phenotype. We find that A. elegantissima has symbiont-specific transcriptional and metabolomic signatures, but a similar bacterial community dominated by a single Sphingomonas species that is commonly found in the cnidarian microbiome. Symbiosis with either eukaryotic symbiont resulted in differential gene expression and metabolic abundance for diverse processes spanning metabolism and immunity to reproduction and development, with some of these processes being unique to either symbiont. The ability to culture A. elegantissima with its phylogenetically divergent photosymbionts and perform experimental manipulations makes A. elegantissima another tractable sea anemone system to decode the symbiotic conversations of coral reef ecosystems and aid in wider conservation efforts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
Shared Dispersal Patterns but Contrasting Levels of Gene Flow in Two Anadromous Salmonids Along a Broad Subarctic Coastal Gradient. Urea Amidolyase as an Enzyme for Urea Utilisation in Phytoplankton: Functional Display in Chlamydomonas reinhardtii. Adaptive Genetic Differentiation Between Spatially Proximate Annual and Perennial Life History Types of a Marine Foundation Species. Metacommunity Theory and Metabarcoding Reveal the Environmental, Spatial and Biotic Drivers of Meiofaunal Communities in Sandy Beaches. Niche Conservatism and Community Assembly Reveal Microbial Community Divergent Succession Between Litter and Topsoil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1