Honghao Liang, Tangcheng Li, Yuanhao Chen, Jingtian Wang, Muhammad Aslam, Huaizhi Qin, Wenkang Fan, Hong Du, Shuh-Ji Kao, Senjie Lin
{"title":"Urea Amidolyase as an Enzyme for Urea Utilisation in Phytoplankton: Functional Display in Chlamydomonas reinhardtii.","authors":"Honghao Liang, Tangcheng Li, Yuanhao Chen, Jingtian Wang, Muhammad Aslam, Huaizhi Qin, Wenkang Fan, Hong Du, Shuh-Ji Kao, Senjie Lin","doi":"10.1111/mec.17734","DOIUrl":null,"url":null,"abstract":"<p><p>Urea is an important source of nitrogen for many phytoplankton with the potential to stimulate harmful algal blooms, but the molecular machinery underpinning urea uptake and assimilation by algae is not fully understood. Urease (URE) is commonly regarded as the responsible enzyme, but urea amidolyase (UAL), albeit known to exist, has hardly been studied. Here, the species distribution, expression patterns and functional roles of UAL are examined. We found a widespread occurrence of UAL across six major phytoplankton lineages, along with evidence of a potential URE-independent evolutionary trajectory and lineage-specific losses. Quantitative analyses based on marine planktonic metagenomes and metatranscriptomes revealed that UAL is as prevalent as URE, but exhibits higher expression levels in phytoplankton than in bacteria, suggesting that UAL plays a crucial role in nitrogen nutrition in marine phytoplankton. Furthermore, using the CRISPR/Cas9 genome editing method and Chlamydomonas reinhardtii as the algal model, we showed that DUR2 in UAL is essential for urea utilisation, as its knockout completely abolishes the ability of algae to grow under urea as the sole nitrogen source. This study unveils an unappreciated mechanism in algae for utilising urea as a nutrient, underscores the need to consider both URE and UAL enzyme systems to model urea utilisation by algae and provides a crucial gene (DUR2) as a potential genetic marker for detecting the contribution of UAL to urea utilisation in phytoplankton.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17734"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17734","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urea is an important source of nitrogen for many phytoplankton with the potential to stimulate harmful algal blooms, but the molecular machinery underpinning urea uptake and assimilation by algae is not fully understood. Urease (URE) is commonly regarded as the responsible enzyme, but urea amidolyase (UAL), albeit known to exist, has hardly been studied. Here, the species distribution, expression patterns and functional roles of UAL are examined. We found a widespread occurrence of UAL across six major phytoplankton lineages, along with evidence of a potential URE-independent evolutionary trajectory and lineage-specific losses. Quantitative analyses based on marine planktonic metagenomes and metatranscriptomes revealed that UAL is as prevalent as URE, but exhibits higher expression levels in phytoplankton than in bacteria, suggesting that UAL plays a crucial role in nitrogen nutrition in marine phytoplankton. Furthermore, using the CRISPR/Cas9 genome editing method and Chlamydomonas reinhardtii as the algal model, we showed that DUR2 in UAL is essential for urea utilisation, as its knockout completely abolishes the ability of algae to grow under urea as the sole nitrogen source. This study unveils an unappreciated mechanism in algae for utilising urea as a nutrient, underscores the need to consider both URE and UAL enzyme systems to model urea utilisation by algae and provides a crucial gene (DUR2) as a potential genetic marker for detecting the contribution of UAL to urea utilisation in phytoplankton.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms